scholarly journals Towards Reduced-Order Models of Solid Oxide Fuel Cell

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Maciej Ławryńczuk

The objective of this work is to find precise reduced-order discrete-time models of a solid oxide fuel cell, which is a multiple-input multiple-output dynamic process. At first, the full-order discrete-time model is found from the continuous-time first-principle description. Next, the discrete-time submodels of hydrogen, oxygen, and water pressures (intermediate variables) are reduced. Two model reduction methods based on observability and controllability Grammians are compared: the state truncation method and reduction by residualisation. In all comparisons, the second method gives better results in terms of dynamic and steady-state errors as well as Nyquist plots. Next, the influence of the order of the pressure models on the errors of the process outputs (the voltage and the pressure difference) is studied. It is found that the number of pressure model parameters may be reduced from 25 to 19 without any deterioration of model accuracy. Two suboptimal reduced models are also discussed with only 14 and 11 pressure parameters, which give dynamic trajectories and steady-state characteristics that are very similar to those obtained from the full-order structure.

Author(s):  
Fatma N. Cayan ◽  
Suryanarayana R. Pakalapati ◽  
Francisco Elizalde-Blancas ◽  
Ismail Celik

A new phenomenological one-dimensional model is formulated to simulate the typical degradation patterns observed in Solid Oxide Fuel Cell (SOFC) anodes due to coal syngas contaminants such as arsenic (As) and phosphorous (P). The model includes ordinary gas phase diffusion including Knudsen diffusion and surface diffusion within the anode and the adsorption reactions on the surface of the Ni-YSZ based anode. Model parameters such as reaction rate constants for the adsorption reactions are calibrated to match the degradation rates reported in the literature. Preliminary results from implementation of the model demonstrated that the deposition of the impurity on the Ni catalyst starts near the fuel channel/anode interface and slowly moves toward the active anode/electrolyte interface which is in good agreement with the experimental data. Parametric studies performed at different impurity concentrations, operating temperatures and current densities showed that the coverage rate increases with increasing temperature, impurity concentration and current density, as expected.


Energies ◽  
2015 ◽  
Vol 8 (11) ◽  
pp. 13231-13254 ◽  
Author(s):  
Paola Costamagna ◽  
Simone Grosso ◽  
Rowland Travis ◽  
Loredana Magistri

2013 ◽  
Vol 232 ◽  
pp. 139-151 ◽  
Author(s):  
Wenxiao Pan ◽  
Jie Bao ◽  
Chaomei Lo ◽  
Kevin Lai ◽  
Khushbu Agarwal ◽  
...  

2018 ◽  
Vol 404 ◽  
pp. 96-105 ◽  
Author(s):  
Xinfang Jin ◽  
Surinder Singh ◽  
Atul Verma ◽  
Brandon Ohara ◽  
Anthony Ku ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document