scholarly journals Dynamic Behaviors of a Nonautonomous Impulsive Competitive System with the Effect of Toxic Substance

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Lijuan Chen ◽  
Fengde Chen ◽  
Liujuan Chen

We firstly propose a nonautonomous impulsive Lotka-Volterra competitive system with the effect of toxic substance. Only one of the two species could produce toxic substance. Sufficient condition which guarantees the extinction of one of the species and the global attractivity of the other species is obtained. We also present an example to verify our main results, which show that species still is possibly driven to extinction when only one of the two species produces toxic substances. The results of this paper supplement the existing results.

2016 ◽  
Vol 14 (1) ◽  
pp. 1157-1173 ◽  
Author(s):  
Fengde Chen ◽  
Xiaoxing Chen ◽  
Shouying Huang

AbstractA two species non-autonomous competitive phytoplankton system with Beddington-DeAngelis functional response and the effect of toxic substances is proposed and studied in this paper. Sufficient conditions which guarantee the extinction of a species and global attractivity of the other one are obtained. The results obtained here generalize the main results of Li and Chen [Extinction in two dimensional nonautonomous Lotka-Volterra systems with the effect of toxic substances, Appl. Math. Comput. 182(2006)684-690]. Numeric simulations are carried out to show the feasibility of our results.


2019 ◽  
Vol 17 (1) ◽  
pp. 776-794 ◽  
Author(s):  
Mengxin He ◽  
Zhong Li ◽  
Fengde Chen

Abstract In this paper, we consider a nonautonomous two-species impulsive competitive system with infinite delays. By the impulsive comparison theorem and some mathematical analysis, we investigate the permanence, extinction and global attractivity of the system, as well as the influence of impulse perturbation on the dynamic behaviors of this system. For the logistic type impulsive equation with infinite delay, our results improve those of Xuxin Yang, Weibing Wang and Jianhua Shen [Permanence of a logistic type impulsive equation with infinite delay, Applied Mathematics Letters, 24(2011), 420-427]. For the corresponding nonautonomous two-species impulsive competitive system without delays, we discuss its permanence, extinction and global attractivity, which weaken and complement the results of Zhijun Liu and Qinglong Wang [An almost periodic competitive system subject to impulsive perturbations, Applied Mathematics and Computation, 231(2014), 377-385].


2010 ◽  
Vol 2010 ◽  
pp. 1-21 ◽  
Author(s):  
Kai Wang ◽  
Zhidong Teng ◽  
Fengqin Zhang

The dynamic behaviors in a chemostat model with delayed nutrient recycling and periodically pulsed input are studied. By introducing new analysis technique, the sufficient and necessary conditions on the permanence and extinction of the microorganisms are obtained. Furthermore, by using the Liapunov function method, the sufficient condition on the global attractivity of the model is established. Finally, an example is given to demonstrate the effectiveness of the results in this paper.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Liqiong Pu ◽  
Xiangdong Xie ◽  
Fengde Chen ◽  
Zhanshuai Miao

We propose a nonlinear discrete system of two species with the effect of toxic substances. By constructing a suitable Lyapunov-type function, we obtain the sufficient conditions which guarantee that one of the components will be driven to extinction while the other will be globally attractive with any positive solution of a discrete equation. Two examples together with their numerical simulations illustrate the feasibility of our main results. The results not only improve but also complement some known results.


2019 ◽  
Vol 17 (1) ◽  
pp. 856-873 ◽  
Author(s):  
Xiaoyan Huang ◽  
Fengde Chen ◽  
Xiangdong Xie ◽  
Liang Zhao

Abstract The extinction property of a two species competitive stage-structured phytoplankton system with harvesting is studied in this paper. Several sets of sufficient conditions which ensure that one of the components will be driven to extinction are established. Our results supplement and complement the results of Li and Chen [Extinction in periodic competitive stage-structured Lotka-Volterra model with the effects of toxic substances, J. Comput. Appl. Math., 2009, 231(1), 143-153] and Liu, Chen, Luo et al. [Extinction and permanence in nonautonomous competitive system with stage structure, J. Math. Anal. Appl., 2002, 274(2), 667-684].


2015 ◽  
Vol 08 (01) ◽  
pp. 1550012 ◽  
Author(s):  
Lijuan Chen ◽  
Fengde Chen

In this paper, we consider a discrete Lotka–Volterra competitive system with the effect of toxic substances and feedback controls. By using the method of discrete Lyapunov function and by developing a new analysis technique, we obtain the sufficient conditions which guarantee that one of the two species will be driven to extinction while the other will be permanent. We improve the corresponding results of Li and Chen [Extinction in two-dimensional discrete Lotka–Volterra competitive system with the effect of toxic substances, Dynam. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 15 (2008) 165–178]. Also, an example together with their numerical simulations shows the feasibility of our main results. It is shown that toxic substances and feedback control variables play an important role in the dynamics of the system.


Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5271-5293
Author(s):  
A.K. Pal ◽  
P. Dolai ◽  
G.P. Samanta

In this paper we have studied the dynamical behaviours of a delayed two-species competitive system affected by toxicant with imprecise biological parameters. We have proposed a method to handle these imprecise parameters by using parametric form of interval numbers. We have discussed the existence of various equilibrium points and stability of the system at these equilibrium points. In case of toxic stimulatory system, the delay model exhibits a stable limit cycle oscillation. Computer simulations are carried out to illustrate our analytical findings.


2010 ◽  
Vol 2010 ◽  
pp. 1-22 ◽  
Author(s):  
Wenjie Qin ◽  
Zhijun Liu

A discrete time non-autonomous two-species competitive system with delays is proposed, which involves the influence of many generations on the density of species population. Sufficient conditions for permanence of the system are given. When the system is periodic, by using the continuous theorem of coincidence degree theory and constructing a suitable Lyapunov discrete function, sufficient conditions which guarantee the existence and global attractivity of positive periodic solutions are obtained. As an application, examples and their numerical simulations are presented to illustrate the feasibility of our main results.


Sign in / Sign up

Export Citation Format

Share Document