scholarly journals Extinction of a two species non-autonomous competitive system with Beddington-DeAngelis functional response and the effect of toxic substances

2016 ◽  
Vol 14 (1) ◽  
pp. 1157-1173 ◽  
Author(s):  
Fengde Chen ◽  
Xiaoxing Chen ◽  
Shouying Huang

AbstractA two species non-autonomous competitive phytoplankton system with Beddington-DeAngelis functional response and the effect of toxic substances is proposed and studied in this paper. Sufficient conditions which guarantee the extinction of a species and global attractivity of the other one are obtained. The results obtained here generalize the main results of Li and Chen [Extinction in two dimensional nonautonomous Lotka-Volterra systems with the effect of toxic substances, Appl. Math. Comput. 182(2006)684-690]. Numeric simulations are carried out to show the feasibility of our results.

2015 ◽  
Vol 08 (01) ◽  
pp. 1550012 ◽  
Author(s):  
Lijuan Chen ◽  
Fengde Chen

In this paper, we consider a discrete Lotka–Volterra competitive system with the effect of toxic substances and feedback controls. By using the method of discrete Lyapunov function and by developing a new analysis technique, we obtain the sufficient conditions which guarantee that one of the two species will be driven to extinction while the other will be permanent. We improve the corresponding results of Li and Chen [Extinction in two-dimensional discrete Lotka–Volterra competitive system with the effect of toxic substances, Dynam. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 15 (2008) 165–178]. Also, an example together with their numerical simulations shows the feasibility of our main results. It is shown that toxic substances and feedback control variables play an important role in the dynamics of the system.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Liqiong Pu ◽  
Xiangdong Xie ◽  
Fengde Chen ◽  
Zhanshuai Miao

We propose a nonlinear discrete system of two species with the effect of toxic substances. By constructing a suitable Lyapunov-type function, we obtain the sufficient conditions which guarantee that one of the components will be driven to extinction while the other will be globally attractive with any positive solution of a discrete equation. Two examples together with their numerical simulations illustrate the feasibility of our main results. The results not only improve but also complement some known results.


2019 ◽  
Vol 17 (1) ◽  
pp. 856-873 ◽  
Author(s):  
Xiaoyan Huang ◽  
Fengde Chen ◽  
Xiangdong Xie ◽  
Liang Zhao

Abstract The extinction property of a two species competitive stage-structured phytoplankton system with harvesting is studied in this paper. Several sets of sufficient conditions which ensure that one of the components will be driven to extinction are established. Our results supplement and complement the results of Li and Chen [Extinction in periodic competitive stage-structured Lotka-Volterra model with the effects of toxic substances, J. Comput. Appl. Math., 2009, 231(1), 143-153] and Liu, Chen, Luo et al. [Extinction and permanence in nonautonomous competitive system with stage structure, J. Math. Anal. Appl., 2002, 274(2), 667-684].


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Lijuan Chen ◽  
Fengde Chen ◽  
Liujuan Chen

We firstly propose a nonautonomous impulsive Lotka-Volterra competitive system with the effect of toxic substance. Only one of the two species could produce toxic substance. Sufficient condition which guarantees the extinction of one of the species and the global attractivity of the other species is obtained. We also present an example to verify our main results, which show that species still is possibly driven to extinction when only one of the two species produces toxic substances. The results of this paper supplement the existing results.


2010 ◽  
Vol 2010 ◽  
pp. 1-22 ◽  
Author(s):  
Wenjie Qin ◽  
Zhijun Liu

A discrete time non-autonomous two-species competitive system with delays is proposed, which involves the influence of many generations on the density of species population. Sufficient conditions for permanence of the system are given. When the system is periodic, by using the continuous theorem of coincidence degree theory and constructing a suitable Lyapunov discrete function, sufficient conditions which guarantee the existence and global attractivity of positive periodic solutions are obtained. As an application, examples and their numerical simulations are presented to illustrate the feasibility of our main results.


2015 ◽  
Vol 08 (05) ◽  
pp. 1550062 ◽  
Author(s):  
Ronghua Tan ◽  
Huili Xiang ◽  
Yiping Chen ◽  
Zhijun Liu

In the real world, the population systems are often subject to white noises and a system with such stochastic perturbations tends to be suitably modeled by stochastic differential equations. This paper is concerned with the dynamic behaviors of a delay stochastic competitive system. We first obtain the global existence of a unique positive solution of system. Later, we show that the solution of system will be stochastically ultimate boundedness. However, large noises may make the system extinct exponentially with probability one. Also, sufficient conditions for the global attractivity of system are established. Finally, illustrated examples are given to show the effectiveness of the proposed criteria.


Author(s):  
Yuji Yoshida ◽  

Utility functions on two-dimensional regions are demonstrated for decision makers’ risk averse behavior by weighted quasi-arithmetic means. For two utility functions on two-dimensional regions, a concept is introduced that decision making with one utility is more risk averse than decision making with the other utility. A necessary condition and sufficient conditions for the concept are demonstrated by their utility functions.


2009 ◽  
Vol 2009 ◽  
pp. 1-17 ◽  
Author(s):  
Runxin Wu ◽  
Lin Li

By constructing a suitable Lyapunov function and using the comparison theorem of difference equation, sufficient conditions which ensure the permanence and global attractivity of the discrete predator-prey system with Hassell-Varley type functional response are obtained. Example together with its numerical simulation shows that the main results are verifiable.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jinglei Tian ◽  
Yongguang Yu ◽  
Hu Wang

Two kinds of three-dimensional fractional Lotka-Volterra systems are discussed. For one system, the asymptotic stability of the equilibria is analyzed by providing some sufficient conditions. And bifurcation property is investigated by choosing the fractional order as the bifurcation parameter for the other system. In particular, the critical value of the fractional order is identified at which the Hopf bifurcation may occur. Furthermore, the numerical results are presented to verify the theoretical analysis.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Zhang ◽  
Shujing Gao ◽  
Kuangang Fan

The dynamic behaviors of a nonautonomous system for migratory birds with Hassell-Varley type functional response and the saturation incidence rate are studied. Under quite weak assumptions, some sufficient conditions are obtained for the permanence and extinction of the disease. Moreover, the global attractivity of the model is discussed by constructing a Lyapunov function. Numerical simulations which support our theoretical analysis are also given.


Sign in / Sign up

Export Citation Format

Share Document