scholarly journals Role of Regulatory T Cells in Tumor-Bearing Mice Treated with Allo-Hematopoietic Stem Cell Transplantation Plus Thymus Transplantation

2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Naoki Hosaka

We recently developed a new allogeneic hematopoietic stem cell transplantation method (allo-HSCT) combined with thymus transplantation (TT) from the same donor (allo-HSCT + TT). This method induces elevated T cell function with mild graft-versus-host disease (GVHD) in comparison to conventional HSCT alone and HSCT + donor lymphocyte infusion (DLI). This new method is effective against several intractable diseases, including malignant tumors, for which conventional treatments are ineffective. Regulatory T (Treg) cells play an important role in the enhanced graft-versus-tumor (GVT) effect and reduction of GVHD, thus leading to longer survival. Replacement and reduction of elevated Tregcells by donor-derived allo-Tregcells from the transplanted thymus may play one of crucial roles in the effect. This review discusses the role of Tregcells in a tumor-bearing mouse model treated with allo-HSCT + TT.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Naoki Hosaka

Although allogeneic hematopoietic stem cell transplantation (allo-HSCT) has become a valuable strategy for some intractable diseases, a number of problems remain to be resolved. We have developed a new HSCT method, HSCT + thymus transplantation (TT) from the same donor, which induces elevated T cell function with mild graft-versus-host disease (GVHD) in comparison to conventional HSCT alone and HSCT + donor lymphocyte infusion (HSCT + DLI). This new method is effective in the treatment of several intractable diseases and conditions, such as autoimmune diseases in aging, advanced malignant tumors, exposure to supralethal irradiation, multiple organ transplantation from different donors, and type 2 diabetes mellitus, for which conventional methods are ineffective. Our findings suggest that allo-HSCT + TT is preferable to conventional allo-HSCT alone or allo-HSCT + DLI. This method may become a valuable next-generation HSCT technique.


2018 ◽  
Vol 25 (35) ◽  
pp. 4535-4544 ◽  
Author(s):  
Annalisa Ruggeri ◽  
Annalisa Paviglianiti ◽  
Fernanda Volt ◽  
Chantal Kenzey ◽  
Hanadi Rafii ◽  
...  

Background: Circulating endothelial cells (CECs), originated form endothelial progenitors (EPCs) are mature cells not associated with vessel walls and detached from the endothelium. Normally, they are present in insignificant amounts in the peripheral blood of healthy individuals. On the other hand, elevated CECs and EPCs levels have been reported in the peripheral blood of patients with different types of cancers and other diseases. Objective: This review aims to provide an overview on the characterization of CECs and EPCs, to describe isolation methods and to identify the potential role of these cells in hematological diseases and hematopoietic stem cell transplantation. Methods: We performed a detailed search of peer-reviewed literature using keywords related to CECs, EPCs, allogeneic hematopoietic stem cell transplantation, and hematological diseases (hemoglobinopathies, hodgkin and non-hodgkin lymphoma, acute leukemia, myeloproliferative syndromes, chronic lymphocytic leukemia). Results: CECs and EPCs are potential biomarkers for several clinical conditions involving endothelial turnover and remodeling, such as in hematological diseases. These cells may be involved in disease progression and in the neoplastic process. Moreover, CECs and EPCs are probably involved in endothelial damage which is a marker of several complications following allogeneic hematopoietic stem cell transplantation. Conclusion: This review provides information about the role of CECs and EPCs in hematological malignancies and shows their implication in predicting disease activity as well as improving HSCT outcomes.


Sign in / Sign up

Export Citation Format

Share Document