scholarly journals The Antiosteoporosis Effects of Zhuanggu Guanjie Pill In Vitro and In Vivo

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Li-juan Chai ◽  
Yue Zhang ◽  
Pan-yang Zhang ◽  
Ya-nan Bi ◽  
Xiao-mei Yuan ◽  
...  

We investigated the beneficial effects and underlying mechanisms of Zhuanggu Guanjie (ZGGJ) pill in osteoporosis in vitro and in vivo. Bone marrow macrophages from 4–6-week-old mice were cultured in the presence of macrophage colony-stimulating factor (15 ng/mL) and receptor activator of nuclear factor-κB ligand (30 ng/mL). Osteoclast differentiation was determined by quantification of tartrate-resistant acid phosphatase activity. Gelatin zymography was used to detect the activity of matrix metalloproteinases in osteoclasts. Ovariectomized rats were administered orally with estradiol valerate or ZGGJ for 8 weeks. Blood was collected to measure serum indices. Tibiae were harvested to carry out bone microcomputed tomography scanning, histomorphological analysis, and bone strength determination. ZGGJ inhibited tartrate-resistant acid phosphatase activity, matrix metalloproteinase 9 expression, and bone resorption in vitro. At doses of 0.55, 1.1, and 2.2 g/kg, ZGGJ exerted significant osteoprotective effects including inhibition of bone turnover markers and improved tibia bone strength in ovariectomized rats. Microcomputed tomographic analysis showed that ZGGJ improved the trabecular architecture with increased connectivity density and trabecular thickness and decreased trabecular spacing. These results revealed that ZGGJ prevents bone loss induced by ovariectomy in rats and that inhibition of bone resorption is involved in the bone-protective effects of ZGGJ.

2000 ◽  
Vol 11 (10) ◽  
pp. 1857-1864
Author(s):  
L. SHANNON HOLLIDAY ◽  
STEPHEN L. GLUCK ◽  
EDUARDO SLATOPOLSKY ◽  
ALEX J. BROWN

Abstract. 1,25-Dihydroxy-19-nor-vitamin D2 (19-norD2), a new analog of 1,25(OH)2D3, suppresses parathyroid hormone in renal failure patients and in uremic rats but has less calcemic activity than 1,25(OH)2D3. Although 19-norD2 has high affinity for the vitamin D receptor and similar pharmacokinetics to those of 1,25(OH)2D3, it has much less bone resorbing activity in vivo. The intrinsic activity of 19-norD2 on osteoclastogenesis and activation of bone resorption in mouse bone marrow cultures was examined to determine the mechanism involved. 19-norD2 and 1,25(OH)2D3 (10 nM) were equivalent in stimulating the formation and maintenance of large multinucleated, tartrate-resistant acid phosphatase-positive cells. However, the amount of bone resorbed by osteoclasts stimulated by 10 nM 19-norD2, as measured by pit-forming assays, was reduced 62% compared with 10 nM 1,25(OH)2D3-stimulated osteoclasts (P < 0.05). This difference could not be attributed to enhanced catabolism or to downregulated vitamin D receptor. The rate of degradation of 19-norD2 in cultures was approximately 20% greater than 1,25(OH)2D3, not enough to account for the different effects on bone resorption. The VDR levels were identical in cultures that were treated with 19-norD2 and 1,25(OH)2D3. In summary, 19-norD2 is less effective than 1,25(OH)2D3 in stimulating mouse marrow osteoclasts to resorb bone. The reason for this difference is not clear but seems to involve the late maturation and/or activation of osteoclasts as the number of pits produced by each tartrate-resistant acid phosphatase-positive cell is reduced under stimulation by 19-norD2 compared with 1,25(OH)2D3.


1988 ◽  
Vol 36 (9) ◽  
pp. 1175-1180 ◽  
Author(s):  
M W Lundy ◽  
K H Lau ◽  
H C Blair ◽  
D J Baylink

We used histological and biochemical methods to determine the cellular origin of bone matrix fluoride-sensitive acid phosphatase in chicken bone. Embryonic chicken calvariae were embedded in plastic and sections stained for acid phosphatase at various concentrations of substrate and fluoride. Acid phosphatase activity was observed in osteoblasts and osteoclasts but not in fibroblasts. Striking inhibition of osteoblastic acid phosphatase occurred at 100 microM fluoride, a concentration that had no apparent effect on osteoclastic acid phosphatase. Inhibition of osteoblastic and osteoclastic acid phosphatase by fluoride was also examined using extracts of embryonic chicken calvarial cells, mouse osteoblasts (MC3T3-El cell line), and purified chick osteoclasts, respectively. Fluoride is a partial competitive inhibitor of both chicken and mouse osteoblastic acid phosphatases, with apparent inhibition constants of 10-100 microM. These concentrations of fluoride correspond to those that increase bone formation in vitro and in vivo. In contrast, the apparent inhibition constant for fluoride of osteoclastic acid phosphatase was much higher (i.e., 0.5 mM). In summary, this study demonstrates that chicken osteoblasts contain an acid phosphatase that is sensitive to inhibition by low concentrations (i.e., microM) of fluoride.


1975 ◽  
Vol 79 (3) ◽  
pp. 459-473 ◽  
Author(s):  
J. Dang ◽  
R. Miquelis ◽  
P. Bastiani ◽  
C. Simon

ABSTRACT In a previous study (Simon et al. 1971) a procedure for the preparation and separation of iodinated particles was described in the rat. The present paper deals with further investigations on the nature of these particles. Acid phosphatase and iodine are conjointly sedimentable and display a latency that is unmasked on dilution in a hypo-osmotic medium and under acidification to pH 5.0. These properties together with the sensitivity to Triton X-100 are best accounted for by assuming that iodinated particles of the thyroid gland are lysosomes. Part of the particulate iodine is soluble in n-butanol (BEI fraction). The existence of this BEI fraction demonstrates that hydrolysis of thyroglobulin occurs within the particles which thus exhibit an acid protease activity. Both the sedimentable iodine pool and acid phosphatase are increased under TSH stimulation and decreased after thyroxine treatment. In addition, the general activity of the iodinated particles is dependent on the daily iodine intake as shown by the variation of their iodine pool, acid phosphatase activity and BEI fraction with the iodine diet. It is concluded that iodinated particles of the thyroid gland are secondary lysosomes which participate in iodine secretion under TSH control. By in vitro treatment with destabilizing media or after in vivo treatment with thyroxine, iodinated particles exhibit a parallel loss of iodine and acid phosphatase. After a short-term TSH treatment in vivo, their iodine pool is more increased than their acid phosphatase activity. It is concluded that, at least in the normal rat thyroid, iodinated particles are essentially secondary lysosomes; true colloid droplets actually accumulate only after sufficient TSH stimulation. After ultracentrifugation, 3 main subpopulations are separated for which iodine and acid phosphatase patterns are superimposed. In addition, they all exhibit properties characteristic of secondary lysosomes. Finally, the presence of a fourth sedimentable iodinated fraction with a high turnover rate is postulated.


2021 ◽  
Author(s):  
Bo Liu ◽  
Yuna Zhang

Abstract ObjectiveOsteoporosis is a prevalent metabolic skeletal disorder featured by microarchitecture bone injury and excessive osteoclastic activity.Here, we aimed to explore the effect of Spinosin on osteoclastogenesis of osteoporosis.DesignThe receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclastogenesis model was established in bone marrow macrophages (BMMs) in vitro. The ovariectomy (OVX)-induced bone loss mouse model was constructed in vivo, followed by micro-CT analysis, Histomorphometric analysis, Hematoxylin and Eosin (H&E) and TRAP staining.ResultsOur data showed that the treatment of Spinosin significantly inhibited the TRAP positive osteoclast and bone resorption induced by RANKL in the BMMs. Spinosin significantly reduced the expression of osteoclast-specific factors, including osteoclast stimulatory transmembrane protein (OC-STAMP), dendritic cell-specific transmembrane protein (DC-STAMP), cathepsin K (CTSK), TRAP, c-Fos and nuclear factor of activated T cells cytoplasm 1 (NFATc1), in the RANKL-treated BMMs. Mechanically, Spinosin was able to inactivate NF-κB by stimulating Nrf2/HO-1 signaling in BMMs. The trabecular space (Tb.Sp), trabecular number (Tb.N), trabecular thickness (Tb.Th), and bone volume to total volume (BV/TV) were inhibited by OVX treatment, and Spinosin could reverse the effect in the bone resorption mouse model. The OVX-induced serum levels of tumor necrosis factor-α (TNF-α) and tartrate-resistant acid phosphatase 5 B (TRAcp5B) were blocked by Spinosin in the mice. Moreover, Spinosin was able to alleviate OVX-induced loss of femur bone and osteoclasts in vivo.ConclusionsIn conclusion, Spinosin attenuates osteoclastogenesis of osteoporosis through inhibiting NF-κB by activating Nrf2/HO-1 expression. Spinosin may serve as the potential candidate for the treatment of osteoporosis.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 619
Author(s):  
Hyun-Jung Park ◽  
Malihatosadat Gholam-Zadeh ◽  
Sun-Young Yoon ◽  
Jae-Hee Suh ◽  
Hye-Seon Choi

Loss of ovarian function is closely related to estrogen (E2) deficiency, which is responsible for increased osteoclast (OC) differentiation and activity. We aimed to investigate the action mechanism of E2 to decrease bone resorption in OCs to protect from ovariectomy (OVX)-induced bone loss in mice. In vivo, tartrate-resistant acid phosphatase (TRAP) staining in femur and serum carboxy-terminal collagen crosslinks-1 (CTX-1) were analyzed upon E2 injection after OVX in mice. In vitro, OCs were analyzed by TRAP staining, actin ring formation, carboxymethylation, determination of reactive oxygen species (ROS) level, and immunoprecipitation coupled with Western blot. In vivo and in vitro, E2 decreased OC size more dramatically than OC number and Methyl-piperidino-pyrazole hydrate dihydrochloride (MPPD), an estrogen receptor alpha (ERα) antagonist, augmented the OC size. ERα was found in plasma membranes and E2/ERα signaling affected receptor activator of nuclear factor κB ligand (RANKL)-induced actin ring formation by rapidly decreasing a proto-oncogene tyrosine-protein kinase, cellular sarcoma (c-Src) (Y416) phosphorylation in OCs. E2 exposure decreased physical interactions between NADPH oxidase 1 (NOX1) and the oxidized form of c-Src homology 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2), leading to higher levels of reduced SHP2. ERα formed a complex with the reduced form of SHP2 and c-Src to decrease c-Src activation upon E2 exposure, which blocked a signal for actin ring formation by decreased Vav guanine nucleotide exchange factor 3 (Vav3) (p–Y) and Ras-related C3 botulinum toxin substrate 1 (Rac1) (GTP) activation in OCs. E2/ERα signals consistently inhibited bone resorption in vitro. In conclusion, our study suggests that E2-binding to ERα forms a complex with SHP2/c-Src to attenuate c-Src activation that was induced upon RANKL stimulation in a non-genomic manner, resulting in an impaired actin ring formation and reducing bone resorption.


2008 ◽  
Vol 39 (6) ◽  
pp. 627-634 ◽  
Author(s):  
Tatiana Salles de Souza Malaspina ◽  
Célio Xavier dos Santos ◽  
Ana Paula Campanelli ◽  
Francisco Rafael Martins Laurindo ◽  
Mari Cleide Sogayar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document