collagen crosslinks
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 30)

H-INDEX

26
(FIVE YEARS 2)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Maitreyi Pillalamarri ◽  
Ravikanth Manyam ◽  
Swetha Pasupuleti ◽  
Smita Birajdar ◽  
Satya Tejaswi Akula

Abstract Background For various legal and forensic scenarios, establishing an individual’s age, both living and dead, plays a crucial role. Various morphological, radiographic, and molecular methods can be used for age estimation. In children and adolescents, age estimation is based on the established developmental stages. However, in adults, where the development ceases into maturation, the degenerative changes play a role in determining the age. Main body of the abstract In the natural aging process, several molecular changes occur most commonly in the long-living proteins and hard tissues like the teeth and bone. These molecular changes gradually lead to alterations in several organs and organ systems, which can be quantified and correlated with age, including aspartic acid racemization, collagen crosslinks, advanced glycation-end products, and mitochondrial DNA mutations. Short conclusion Among the above methods, the racemization of aspartic acid can be considered as the most precise method. The main advantage of using aspartic acid racemization is that the sample can be collected from tissues (teeth) protected from various environmental and nutritional factors. If all the confounding factors are stable, the utilization of advanced glycation-end products can also be considered valuable. Environmental factors like lead accumulations may also help determine the age. However, further studies need to be conducted, focusing on providing a more standardized method. This review provides a concise summary of the biochemical techniques that can be used for estimation of age.


Author(s):  
Yimin Yao ◽  
Alison Findlay ◽  
Jessica Stolp ◽  
Benjamin Rayner ◽  
Kjetil Ask ◽  
...  

Background/Purpose: Systemic sclerosis (SSc) is characterised by progressive multiple-organ fibrosis leading to morbidity and mortality. Lysyl oxidases play a vital role in the cross-linking of collagens and subsequent build-up of fibrosis in the extracellular matrix. As such, their inhibition provides a novel treatment paradigm for SSc. Experimental Approach: Lysyl oxidases are upregulated in preclinical models of fibrosis in skin, lung, heart, kidney and liver. A novel small molecule pan-lysyl oxidase inhibitor, PXS-5505, currently in clinical development for bone fibrosis treatment was evaluated in in vivo rodent models resembling the fibrotic conditions in SSc. Key Results: Both lysyl oxidase and lysyl oxidase-like 2 (LOXL2) expression was elevated in the skin and lung of SSc patients. Once-a-day oral application of PXS-5505 inhibited lysyl oxidase activity in the skin and LOXL2 activity in the lung. PXS-5505 exhibited anti-fibrotic effects in the SSc skin mouse model, reducing dermal thickness and α-smooth muscle actin compared to the disease controls. Similarly, in the bleomycin-induced mouse lung model, PXS-5505 reduced tissue fibrosis toward normal levels. The anti-fibrotic efficacy of PXS-5505 in the bleomycin exposed lungs was mediated by its ability to normalise collagen/elastin crosslink formation, a direct consequence of lysyl oxidase inhibition. PXS-5505 also reduced area of fibrosis in rodent models of the ischaemia-reperfusion heart, the unilateral ureteral obstruction kidney and the CCl4-induced fibrotic liver. Conclusion/Implication: PXS-5505 consistently demonstrates potent anti-fibrotic efficacy in multiple models of organ fibrosis relevant to the pathogenesis of SSc, suggesting that it may be efficacious as a novel approach for treating SSc.


Cartilage ◽  
2021 ◽  
pp. 194760352110605
Author(s):  
Benjamin J. Bielajew ◽  
Jerry C. Hu ◽  
Kyriacos A. Athanasiou

Introduction This study develops assays to quantify collagen subtypes and crosslinks with liquid chromatography-mass spectrometry (LC-MS) and characterizes the cartilages in the Yucatan minipig. Methods For collagen subtyping, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was performed on tissues digested in trypsin. For collagen crosslinks, LC-MS analysis was performed on hydrolysates. Samples were also examined histologically and with bottom-up proteomics. Ten cartilages (femoral condyle, femoral head, facet joint, floating rib, true rib, auricular cartilage, annulus fibrosus, 2 meniscus locations, and temporomandibular joint disc) were analyzed. Results The collagen subtyping assay quantified collagen types I and II. The collagen crosslinks assay quantified mature and immature crosslinks. Collagen subtyping revealed that collagen type I predominates in fibrocartilages and collagen type II in hyaline cartilages, as expected. Elastic cartilage and fibrocartilages had more mature collagen crosslink profiles than hyaline cartilages. Bottom-up proteomics revealed a spectrum of ratios between collagen types I and II, and quantified 42 proteins, including 24 collagen alpha-chains and 12 minor collagen types. Discussion The novel assays developed in this work are sensitive, inexpensive, and use a low operator time relative to other collagen analysis methods. Unlike the current collagen assays, these assays quantify collagen subtypes and crosslinks without an antibody-based approach or lengthy chromatography. They apply to any collagenous tissue, with broad applications in tissue characterization and tissue engineering. For example, a novel finding of this work was the presence of a large quantity of collagen type III in the white-white knee meniscus and a spectrum of hyaline and fibrous cartilages.


Author(s):  
Giorgia Di Lorenzo ◽  
Lena M. Westermann ◽  
Timur A. Yorgan ◽  
Julian Stürznickel ◽  
Nataniel F. Ludwig ◽  
...  

Abstract Purpose Pathogenic variants in GNPTAB and GNPTG, encoding different subunits of GlcNAc-1-phosphotransferase, cause mucolipidosis (ML) II, MLIII alpha/beta, and MLIII gamma. This study aimed to investigate the cellular and molecular bases underlying skeletal abnormalities in patients with MLII and MLIII. Methods We analyzed bone biopsies from patients with MLIII alpha/beta or MLIII gamma by undecalcified histology and histomorphometry. The skeletal status of Gnptgkoand Gnptab-deficient mice was determined and complemented by biochemical analysis of primary Gnptgko bone cells. The clinical relevance of the mouse data was underscored by systematic urinary collagen crosslinks quantification in patients with MLII, MLIII alpha/beta, and MLIII gamma. Results The analysis of iliac crest biopsies revealed that bone remodeling is impaired in patients with GNPTAB-associated MLIII alpha/beta but not with GNPTG-associated MLIII gamma. Opposed to Gnptab-deficient mice, skeletal remodeling is not affected in Gnptgko mice. Most importantly, patients with variants in GNPTAB but not in GNPTG exhibited increased bone resorption. Conclusion The gene-specific impact on bone remodeling in human individuals and in mice proposes distinct molecular functions of the GlcNAc-1-phosphotransferase subunits in bone cells. We therefore appeal for the necessity to classify MLIII based on genetic in addition to clinical criteria to ensure appropriate therapy.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ceylan Onursal ◽  
Elisabeth Dick ◽  
Ilias Angelidis ◽  
Herbert B. Schiller ◽  
Claudia A. Staab-Weijnitz

In addition to providing a macromolecular scaffold, the extracellular matrix (ECM) is a critical regulator of cell function by virtue of specific physical, biochemical, and mechanical properties. Collagen is the main ECM component and hence plays an essential role in the pathogenesis and progression of chronic lung disease. It is well-established that many chronic lung diseases, e.g., chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) primarily manifest in the elderly, suggesting increased susceptibility of the aged lung or accumulated alterations in lung structure over time that favour disease. Here, we review the main steps of collagen biosynthesis, processing, and turnover and summarise what is currently known about alterations upon lung ageing, including changes in collagen composition, modification, and crosslinking. Recent proteomic data on mouse lung ageing indicates that, while the ER-resident machinery of collagen biosynthesis, modification and triple helix formation appears largely unchanged, there are specific changes in levels of type IV and type VI as well as the two fibril-associated collagens with interrupted triple helices (FACIT), namely type XIV and type XVI collagens. In addition, levels of the extracellular collagen crosslinking enzyme lysyl oxidase are decreased, indicating less enzymatically mediated collagen crosslinking upon ageing. The latter contrasts with the ageing-associated increase in collagen crosslinking by advanced glycation endproducts (AGEs), a result of spontaneous reactions of protein amino groups with reactive carbonyls, e.g., from monosaccharides or reactive dicarbonyls like methylglyoxal. Given the slow turnover of extracellular collagen such modifications accumulate even more in ageing tissues. In summary, the collective evidence points mainly toward age-induced alterations in collagen composition and drastic changes in the molecular nature of collagen crosslinks. Future work addressing the consequences of these changes may provide important clues for prevention of lung disease and for lung bioengineering and ultimately pave the way to novel targeted approaches in lung regenerative medicine.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 226.2-226
Author(s):  
I. Bernabei ◽  
D. Kronenberg ◽  
R. Stange ◽  
J. Bertrand ◽  
T. Hügle ◽  
...  

Background:Pathological (or heterotopic) calcification is the deposition of calcium-containing crystals in soft tissues that normally do not calcify. The deposition of these crystals in tendons such as the rotator cuff and the Achilles tendon is known as calcific tendinopathy (CT). CT is a painful condition, which increases tendon rupture rate and leads to disability.Objectives:To understand what inhibits calcification, in order to provide new strategies to treat a condition for which existing therapies are ineffective.Methods:We investigated the role of the gasotransmitter hydrogen sulfide (H2S), and in particular of the H2S-producing enzyme cystathionine γ-lyase (CSE) in CT. In vitro, we induced calcification in tenocytes from WT and CSE KO mice or we treated WT tenocytes with different H2S donors. In vivo, calcification was assessed in a surgery-induced murine model of CT (tenotomy of the Achilles tendon) and in a spontaneous model of CT (aging). Samples obtained from patients with rotator cuff or Achilles tendon CT were also analyzed. To investigate the underlying mechanisms of the CSE-H2S effect, we focused on the bone morphogenic proteins (BMPs) pathway. We additionally explored if altered extracellular matrix (ECM) organization, due to lysyl oxidase (LOX) activity and aberrant collagen-crosslinks, could also be involved in CT. In this context, we studied if H2S could affect LOX expression and activity.Results:In vitro, tenocyte calcification was inhibited by exogenous H2S-donors, while it was exacerbated in CSE KO tenocytes. The protective role of CSE-H2S was confirmed in vivo. In aged mice, microtomography analysis revealed exacerbated Achilles tendon calcification in CSE KO mice compared to WT. In the surgery-induced model of CT, an inverse correlation between calcification and CSE expression in operated Achilles tendon was seen over time. Similarly, inversed correlation between calcification and CSE expression was found in human CT samples.Reduced calcification in tenocytes exposed to H2S was accompanied by decreased expression of genes coding for BMP2, BMP4 and decreased activation of the BMP signaling pathway (pSMAD1/5/8). On the contrary, BMPs expression and BMPs-pathway activation were exacerbated in CSE KO tenocytes compared to WT tenocytes.We next investigated whether ECM disorganization could play a role in CT. Tenocytes cultured in calcification media and treated with the pan-inhibitor of lysyl oxidases (LOX, LOXL1-4) β-aminopropionitrile (BAPN) showed decreased calcification. This pointed to a potential beneficial role of LOX inhibition, therefore decreased collagen-crosslinks, in CT. By analysis of LOXs gene expression in WT and CSE KO tenocytes cultured in calcifying condition, we found much higher expression (4-fold) of LOX, LOL2 and LOXL4 in CSE KO tenocytes. Moreover, H2S-donors inhibited LOX activity. Altogether, these results suggest that decreased H2S could lead to aberrant LOX expression and activity, excessive collagen cross-links in the ECM, and ultimately calcification. Further experiments are ongoing to prove these hypotheses.Conclusion:We suggest targeting H2S production by CSE, or supplying an H2S-donor, is of therapeutic relevance to pathological calcification in the context of CT and can modify its disease course.The anti-mineralizing effect of H2S in tendons could be due to both inhibition of the BMPs pathway and suppression of abnormal LOXs activity.Disclosure of Interests:None declared.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 619
Author(s):  
Hyun-Jung Park ◽  
Malihatosadat Gholam-Zadeh ◽  
Sun-Young Yoon ◽  
Jae-Hee Suh ◽  
Hye-Seon Choi

Loss of ovarian function is closely related to estrogen (E2) deficiency, which is responsible for increased osteoclast (OC) differentiation and activity. We aimed to investigate the action mechanism of E2 to decrease bone resorption in OCs to protect from ovariectomy (OVX)-induced bone loss in mice. In vivo, tartrate-resistant acid phosphatase (TRAP) staining in femur and serum carboxy-terminal collagen crosslinks-1 (CTX-1) were analyzed upon E2 injection after OVX in mice. In vitro, OCs were analyzed by TRAP staining, actin ring formation, carboxymethylation, determination of reactive oxygen species (ROS) level, and immunoprecipitation coupled with Western blot. In vivo and in vitro, E2 decreased OC size more dramatically than OC number and Methyl-piperidino-pyrazole hydrate dihydrochloride (MPPD), an estrogen receptor alpha (ERα) antagonist, augmented the OC size. ERα was found in plasma membranes and E2/ERα signaling affected receptor activator of nuclear factor κB ligand (RANKL)-induced actin ring formation by rapidly decreasing a proto-oncogene tyrosine-protein kinase, cellular sarcoma (c-Src) (Y416) phosphorylation in OCs. E2 exposure decreased physical interactions between NADPH oxidase 1 (NOX1) and the oxidized form of c-Src homology 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2), leading to higher levels of reduced SHP2. ERα formed a complex with the reduced form of SHP2 and c-Src to decrease c-Src activation upon E2 exposure, which blocked a signal for actin ring formation by decreased Vav guanine nucleotide exchange factor 3 (Vav3) (p–Y) and Ras-related C3 botulinum toxin substrate 1 (Rac1) (GTP) activation in OCs. E2/ERα signals consistently inhibited bone resorption in vitro. In conclusion, our study suggests that E2-binding to ERα forms a complex with SHP2/c-Src to attenuate c-Src activation that was induced upon RANKL stimulation in a non-genomic manner, resulting in an impaired actin ring formation and reducing bone resorption.


2021 ◽  
Author(s):  
Signe Stensen ◽  
Lærke S Gasbjerg ◽  
Liva L. Krogh ◽  
Kirsa Skov-Jeppesen ◽  
Alexander H. Sparre-Ulrich ◽  
...  

Objective: The insulinotropic effect of exogenous, intravenously infused glucose-dependent insulinotropic polypeptide (GIP) is impaired in patients with type 2 diabetes. We evaluated the effects of endogenous GIP in relation to glucose and bone metabolism in patients with type 2 diabetes using a selective GIP receptor antagonist and hypothesized that the effects of endogenous GIP were preserved. Design: A randomized, double-blinded, placebo-controlled, crossover study. Methods: Ten patients with overweight/obesity and type 2 diabetes (mean±SD; HbA1c 52±11 mmol/mol; BMI 32.5±4.8 kg/m2) were included. We infused a selective GIP receptor antagonist, GIP(3-30)NH2 (1,200 pmol × kg-1 × min-1), or placebo (saline) during two separate, 230-minute, standardized, liquid mixed meal tests followed by an ad libitum meal. Subcutaneous adipose tissue biopsies were analyzed. Results: Compared with placebo, GIP(3-30)NH2 reduced postprandial insulin secretion (Δbaseline-subtracted area under the curve (bsAUC)C-peptide%±SEM; -14±6%, p=0.021) and peak glucagon (Δ%±SEM; -11±6%, p=0.046), but had no effect on plasma glucose (p=0.692). Suppression of bone resorption (assessed by circulating carboxy-terminal collagen crosslinks (CTX)) was impaired during GIP(3-30)NH2 infusion compared with placebo (ΔbsAUCCTX;±SEM; -4.9±2 ng/ml × min, p=0.005) corresponding to a ~50% reduction. Compared with placebo, GIP(3-30)NH2 did not affect plasma lipids, ad libitum meal consumption or adipose tissue triglyceride content. Conclusions: Using a selective GIP receptor antagonist during a meal, we show that endogenous GIP increases postprandial insulin secretion with little effect on postprandial glycemia but is important for postprandial bone homeostasis in patients with type 2 diabetes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hussein Mehidine ◽  
Matthieu Refregiers ◽  
Frédéric Jamme ◽  
Pascale Varlet ◽  
Marjorie Juchaux ◽  
...  

AbstractMeningioma is the most common primary intracranial extra-axial tumor. Total surgical removal is the standard therapeutic method to treat this type of brain tumors. However, the risk of recurrence depends on the tumor grade and the extent of the resection including the infiltrated dura mater and, if necessary, the infiltrated bone. Therefore, proper resection of all invasive tumor borders without touching eloquent areas is of primordial in order to decrease the risk of recurrence. Nowadays, none of the intraoperative used tools is able to provide a precise real-time histopathological information on the tumor surrounding areas to help the surgeon to achieve a gross total removal. To respond to this problem, our team is developing a multimodal two-photon fluorescence endomicroscope, compatible with the surgeon tool, to better delimitate tumor boundaries, relying on the endogenous fluorescence of brain tissues. In this context, we are building a tissue database in order to specify each brain tissue, whether healthy or tumoral, with its specific optical signature. In this study, we present a multimodal and multiscale optical measurements on non-tumoral control brain tissue obtained in epilepsy surgery patients and several meningioma grades. We investigated tissue auto-fluorescence to track the molecular changes associated with the tumor grade from deep ultra-violet (DUV) to near infrared (NIR) excitation. Micro-spectroscopy, fluorescence lifetime imaging, two-photon fluorescence imaging and Second Harmonic Generation (SHG) imaging were performed. Several optically derived parameters such as collagen crosslinks fluorescence in DUV, SHG emission in NIR and long lifetime intensity fraction of Nicotinamide Adenine Dinucleotide and Flavins were correlated to discriminate cancerous tissue from control one. While collagen response managed to discriminate meningioma grades from control samples with a 100% sensitivity and 90% specificity through a 3D discriminative algorithm.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 237
Author(s):  
Aleksandra Rył ◽  
Tomasz Miazgowski ◽  
Aleksandra Szylińska ◽  
Agnieszka Turoń-Skrzypińska ◽  
Alina Jurewicz ◽  
...  

The aim of this study was to assess the associations of serum and bone zinc (Zn) and cuprum (Cu) with bone mineral density (BMD) and content (BMC), markers of bone turnover, and sex hormones. The study group comprised 144 men treated with total hip replacement due to hip osteoarthritis. We measured total, free, and bioavailable testosterone, estradiol, and sex-hormone-binding globulin (sex hormones), as well as parathyroid hormone, osteocalcin, carboxy terminal collagen crosslinks, and N-terminal propeptide of type I procollagen (markers of bone turnover). Total body BMD, BMC, total and visceral fat, and appendicular skeletal mass (ASM) were measured using dual-energy X-ray absorptiometry. ASM index, and total and visceral fat were positively correlated with BMD. Bone Zn correlated neither with sex hormones nor with bone turnover markers; however, it was positively associated both with BMD and with BMC, while bone Cu (as opposed to serum Cu) was not. In multiple regression, the ASM index, Zn/Cu ratio (in both the serum and the bone), and serum Cu concentration were significantly associated with BMD and BMC after adjustment for age and body mass index (BMI). Our results suggest that the Zn/Cu ratio in both the serum and the bone may exert a significant positive effect on total BMD and BMC.


Sign in / Sign up

Export Citation Format

Share Document