scholarly journals Exosomes from Human Gingiva-Derived Mesenchymal Stem Cells Combined with Biodegradable Chitin Conduits Promote Rat Sciatic Nerve Regeneration

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Feng Rao ◽  
Dianying Zhang ◽  
Tengjiaozi Fang ◽  
Changfeng Lu ◽  
Bo Wang ◽  
...  

At present, repair methods for peripheral nerve injury often fail to get satisfactory result. Although various strategies have been adopted to investigate the microenvironment after peripheral nerve injury, the underlying molecular mechanisms of neurite outgrowth remain unclear. In this study, we evaluate the effects of exosomes from gingival mesenchymal stem cells (GMSCs) combined with biodegradable chitin conduits on peripheral nerve regeneration. GMSCs were isolated from human gingival tissue and characterized by surface antigen analysis and in vitro multipotent differentiation. The cell supernatant was collected to isolate the exosomes. The exosomes were characterized by transmission electron microscopy, Western blot, and size distribution analysis. The effects of exosomes on peripheral nerve regeneration in vitro were evaluated by coculture with Schwann cells and DRGs. The chitin conduit was prepared and combined with the exosomes to repair rat sciatic nerve defect. Histology, electrophysiology, and gait analysis were used to test the effects of exosomes on sciatic nerve function recovery in vivo. We have successfully cultured GMSCs and isolated exosomes. The exosomes from GMSCs could significantly promote Schwann cell proliferation and DRG axon growth. The in vivo studies showed that chitin conduit combined with exosomes from GMSCs could significantly increase the number and diameter of nerve fibers and promote myelin formation. In addition, muscle function, nerve conduction function, and motor function were also obviously recovered. In summary, this study suggests that GMSC-derived exosomes combined with biodegradable chitin conduits are a useful and novel therapeutic intervention in peripheral nerve repair.

2013 ◽  
Vol 41 (04) ◽  
pp. 865-885 ◽  
Author(s):  
Sheng-Chi Lee ◽  
Chin-Chuan Tsai ◽  
Chun-Hsu Yao ◽  
Yuan-Man Hsu ◽  
Yueh-Sheng Chen ◽  
...  

The present study provides in vitro and in vivo evaluation of arecoline on peripheral nerve regeneration. In the in vitro study, we found that arecoline at 50 μg/ml could significantly promote the survival and outgrowth of cultured Schwann cells as compared to the controls treated with culture medium only. In the in vivo study, we evaluated peripheral nerve regeneration across a 10-mm gap in the sciatic nerve of the rat, using a silicone rubber nerve chamber filled with the arecoline solution. In the control group, the chambers were filled with normal saline only. At the end of the fourth week, morphometric data revealed that the arecoline-treated group at 5 μg/ml significantly increased the number and the density of myelinated axons as compared to the controls. Immunohistochemical staining in the arecoline-treated animals at 5 μg/ml also showed their neural cells in the L4 and L5 dorsal root ganglia ipsilateral to the injury were strongly retrograde-labeled with fluorogold and lamina I–II regions in the dorsal horn ipsilateral to the injury were significantly calcitonin gene-related peptide-immunolabeled compared with the controls. In addition, we found that the number of macrophages recruited in the distal sciatic nerve was increased as the concentration of arecoline was increased. Electrophysiological measurements showed the arecoline-treated groups at 5 and 50 μg/ml had a relatively larger nerve conductive velocity of the evoked muscle action potentials compared to the controls. These results indicate that arecoline could stimulate local inflammatory conditions, improving the recovery of a severe peripheral nerve injury.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shixian Dong ◽  
Sijia Feng ◽  
Yuzhou Chen ◽  
Mo Chen ◽  
Yimeng Yang ◽  
...  

Peripheral nerve injury gives rise to devastating conditions including neural dysfunction, unbearable pain and even paralysis. The therapeutic effect of current treatment for peripheral nerve injury is unsatisfactory, resulting in slow nerve regeneration and incomplete recovery of neural function. In this study, nerve suture combined with ADSCs injection was adopted in rat model of sciatic nerve injury. Under real-time visualization of the injected cells with the guidance of NIR-II fluorescence imaging in vivo, a spatio-temporal map displaying cell migration from the proximal injection site (0 day post-injection) of the nerve to the sutured site (7 days post-injection), and then to the distal section (14 days post-injection) was demonstrated. Furthermore, the results of electromyography and mechanical pain threshold indicated nerve regeneration and functional recovery after the combined therapy. Therefore, in the current study, the observed ADSCs migration in vivo, electrophysiological examination results and pathological changes all provided robust evidence for the efficacy of the applied treatment. Our approach of nerve suture combined with ADSCs injection in treating peripheral nerve injury under real-time NIR-II imaging monitoring in vivo added novel insights into the treatment for peripheral nerve injury, thus further enhancing in-depth understanding of peripheral nerve regeneration and the mechanism behind.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Hui Liu ◽  
Peizhen Lv ◽  
Yongjia Zhu ◽  
Huayu Wu ◽  
Kun Zhang ◽  
...  

Abstract Salidriside (SDS), a phenylpropanoid glycoside derived from Rhodiola rosea L, has been shown to be neuroprotective in many studies, which may be promising in nerve recovery. In this study, the neuroprotective effects of SDS on engineered nerve constructed by Schwann cells (SCs) and Poly (lactic-co-glycolic acid) (PLGA) were studied in vitro. We further investigated the effect of combinational therapy of SDS and PLGA/SCs based tissue engineering on peripheral nerve regeneration based on the rat model of nerve injury by sciatic transection. The results showed that SDS dramatically enhanced the proliferation and function of SCs. The underlying mechanism may be that SDS affects SCs growth through the modulation of neurotrophic factors (BDNF, GDNF and CNTF). 12 weeks after implantation with a 12 mm gap of sciatic nerve injury, SDS-PLGA/SCs achieved satisfying outcomes of nerve regeneration, as evidenced by morphological and functional improvements upon therapy by SDS, PLGA/SCs or direct suture group assessed by sciatic function index, nerve conduction assay, HE staining and immunohistochemical analysis. Our results demonstrated the significant role of introducing SDS into neural tissue engineering to promote nerve regeneration.


Sign in / Sign up

Export Citation Format

Share Document