scholarly journals Effective Hybrid Algorithm of Taguchi Method, FEM, RSM, and Teaching Learning-Based Optimization for Multiobjective Optimization Design of a Compliant Rotary Positioning Stage for Nanoindentation Tester

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Minh Phung Dang ◽  
Thanh-Phong Dao ◽  
Ngoc Le Chau ◽  
Hieu Giang Le

This paper proposes an effective hybrid optimization algorithm for multiobjective optimization design of a compliant rotary positioning stage for indentation tester. The stage is created with respect to the Beetle’s profile. To meet practical demands of the stage, the geometric parameters are optimized so as to find the best performances. In the present work, the Taguchi method is employed to lay out the number of numerical experiments. Subsequently, the finite element method is built to retrieve the numerical data. The mathematical models are then established based on the response surface method. Before conducting the optimization implementation, the weight factor of each response is calculated exactly. Based on the well-established models, the multiple performances are simultaneously optimized utilizing the teaching learning-based optimization. The results found that the weight factors of safety factor and displacement are 0.5995 (59.95%) and 0.4005 (40.05%), respectively. The results revealed that the optimal safety factor is about 1.558 and the optimal displacement is 2.096 mm. The validations are in good agreement with the predicted results. Sensitivity analysis is carried out to identify the effects of variables on the responses. Using the Wilcoxon’s rank signed test and Friedman test, the effectiveness of the proposed hybrid approach is better than that of other evolutionary algorithms. It ensures a good effectiveness to solve a complex multiobjective optimization problem.

2019 ◽  
Vol 8 (3) ◽  
pp. 1996-2002

Teaching-learning based optimization (TLBO), biogeography-based optimization (BBO) and fuzzy multiobjective linear programming (FMOLP) are compared in this paper for portfolio optimization. A hybrid approach has been adopted for this comparative study which is a combination of a few methods, such as investor topology, cluster analysis, analytical hierarchy process (AHP) and optimization techniques. Return, risk, liquidity, coefficient of variation (CV) and AHP weighted scores are used as the objective function for optimization.


Author(s):  
Sarat Chandra Nayak ◽  
Subhranginee Das ◽  
Mohammad Dilsad Ansari

Background and Objective: Stock closing price prediction is enormously complicated. Artificial Neural Networks (ANN) are excellent approximation algorithms applied to this area. Several nature-inspired evolutionary optimization techniques are proposed and used in the literature to search the optimum parameters of ANN based forecasting models. However, most of them need fine-tuning of several control parameters as well as algorithm specific parameters to achieve optimal performance. Improper tuning of such parameters either leads toward additional computational cost or local optima. Methods: Teaching Learning Based Optimization (TLBO) is a newly proposed algorithm which does not necessitate any parameters specific to it. The intrinsic capability of Functional Link Artificial Neural Network (FLANN) to recognize the multifaceted nonlinear relationship present in the historical stock data made it popular and got wide applications in the stock market prediction. This article presents a hybrid model termed as Teaching Learning Based Optimization of Functional Neural Networks (TLBO-FLN) by combining the advantages of both TLBO and FLANN. Results and Conclusion: The model is evaluated by predicting the short, medium, and long-term closing prices of four emerging stock markets. The performance of the TLBO-FLN model is measured through Mean Absolute Percentage of Error (MAPE), Average Relative Variance (ARV), and coefficient of determination (R2); compared with that of few other state-of-the-art models similarly trained and found superior.


Sign in / Sign up

Export Citation Format

Share Document