scholarly journals A CEEMDAN and XGBOOST-Based Approach to Forecast Crude Oil Prices

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Yingrui Zhou ◽  
Taiyong Li ◽  
Jiayi Shi ◽  
Zijie Qian

Crude oil is one of the most important types of energy for the global economy, and hence it is very attractive to understand the movement of crude oil prices. However, the sequences of crude oil prices usually show some characteristics of nonstationarity and nonlinearity, making it very challenging for accurate forecasting crude oil prices. To cope with this issue, in this paper, we propose a novel approach that integrates complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and extreme gradient boosting (XGBOOST), so-called CEEMDAN-XGBOOST, for forecasting crude oil prices. Firstly, we use CEEMDAN to decompose the nonstationary and nonlinear sequences of crude oil prices into several intrinsic mode functions (IMFs) and one residue. Secondly, XGBOOST is used to predict each IMF and the residue individually. Finally, the corresponding prediction results of each IMF and the residue are aggregated as the final forecasting results. To demonstrate the performance of the proposed approach, we conduct extensive experiments on the West Texas Intermediate (WTI) crude oil prices. The experimental results show that the proposed CEEMDAN-XGBOOST outperforms some state-of-the-art models in terms of several evaluation metrics.

2018 ◽  
Vol 80 (4) ◽  
Author(s):  
Muhammad Aamir ◽  
Ani Shabri ◽  
Muhammad Ishaq

This paper used complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) based hybrid model for the forecasting of world crude oil prices. For this purpose, the crude oil prices original time series are decomposed into sub small finite series called intrinsic mode functions (IMFs). Then ARIMA model was applied to each extracted IMF to estimate the parameters. Next, using these estimated parameters of each ARIMA model, the Kalman Filter was run for each IMF, so that these extracted IMFs can be predicted more accurately. Finally, all IMFs are combined to get the result. For testing and verification of the proposed method, two crude oil prices were used as a sample i.e. Brent and WTI (West Texas Intermediate) crude oil monthly prices series. The D-statistic values of the proposed model were 93.33% for Brent and 89.29% for WTI which reveals the importance of the CEEMDAN based hybrid model.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1882 ◽  
Author(s):  
Taiyong Li ◽  
Zhenda Hu ◽  
Yanchi Jia ◽  
Jiang Wu ◽  
Yingrui Zhou

Crude oil is one of the most important types of energy and its prices have a great impact on the global economy. Therefore, forecasting crude oil prices accurately is an essential task for investors, governments, enterprises and even researchers. However, due to the extreme nonlinearity and nonstationarity of crude oil prices, it is a challenging task for the traditional methodologies of time series forecasting to handle it. To address this issue, in this paper, we propose a novel approach that incorporates ensemble empirical mode decomposition (EEMD), sparse Bayesian learning (SBL), and addition, namely EEMD-SBL-ADD, for forecasting crude oil prices, following the “decomposition and ensemble” framework that is widely used in time series analysis. Specifically, EEMD is first used to decompose the raw crude oil price data into components, including several intrinsic mode functions (IMFs) and one residue. Then, we apply SBL to build an individual forecasting model for each component. Finally, the individual forecasting results are aggregated as the final forecasting price by simple addition. To validate the performance of the proposed EEMD-SBL-ADD, we use the publicly-available West Texas Intermediate (WTI) and Brent crude oil spot prices as experimental data. The experimental results demonstrate that the EEMD-SBL-ADD outperforms some state-of-the-art forecasting methodologies in terms of several evaluation criteria such as the mean absolute percent error (MAPE), the root mean squared error (RMSE), the directional statistic (Dstat), the Diebold–Mariano (DM) test, the model confidence set (MCS) test and running time, indicating that the proposed EEMD-SBL-ADD is promising for forecasting crude oil prices.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3603 ◽  
Author(s):  
Taiyong Li ◽  
Yingrui Zhou ◽  
Xinsheng Li ◽  
Jiang Wu ◽  
Ting He

As one of the leading types of energy, crude oil plays a crucial role in the global economy. Understanding the movement of crude oil prices is very attractive for producers, consumers and even researchers. However, due to its complex features of nonlinearity and nonstationarity, it is a very challenging task to accurately forecasting crude oil prices. Inspired by the well-known framework “decomposition and ensemble” in signal processing and/or time series forecasting, we propose a new approach that integrates the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), differential evolution (DE) and several types of ridge regression (RR), namely, ICEEMDAN-DE-RR, for more accurate crude oil price forecasting in this paper. The proposed approach consists of three steps. First, we use the ICEEMDAN to decompose the complex daily crude oil price series into several relatively simple components. Second, ridge regression or kernel ridge regression is employed to forecast each decomposed component. To enhance the accuracy of ridge regression, DE is used to jointly optimize the regularization item, the weights and parameters of each single kernel for each component. Finally, the predicted results of all components are aggregated as the final predicted results. The publicly available West Texas Intermediate (WTI) daily crude oil spot prices are used to validate the performance of the proposed approach. The experimental results indicate that the proposed approach can achieve better performance than some state-of-the-art approaches in terms of several evaluation criteria, demonstrating that the proposed ICEEMDAN-DE-RR is very promising for daily crude oil price forecasting.


Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 140 ◽  
Author(s):  
Jiang Wu ◽  
Tengfei Zhou ◽  
Taiyong Li

Epilepsy is a common nervous system disease that is characterized by recurrent seizures. An electroencephalogram (EEG) records neural activity, and it is commonly used for the diagnosis of epilepsy. To achieve accurate detection of epileptic seizures, an automatic detection approach of epileptic seizures, integrating complementary ensemble empirical mode decomposition (CEEMD) and extreme gradient boosting (XGBoost), named CEEMD-XGBoost, is proposed. Firstly, the decomposition method, CEEMD, which is capable of effectively reducing the influence of mode mixing and end effects, was utilized to divide raw EEG signals into a set of intrinsic mode functions (IMFs) and residues. Secondly, the multi-domain features were extracted from raw signals and the decomposed components, and they were further selected according to the importance scores of the extracted features. Finally, XGBoost was applied to develop the epileptic seizure detection model. Experiments were conducted on two benchmark epilepsy EEG datasets, named the Bonn dataset and the CHB-MIT (Children’s Hospital Boston and Massachusetts Institute of Technology) dataset, to evaluate the performance of our proposed CEEMD-XGBoost. The extensive experimental results indicated that, compared with some previous EEG classification models, CEEMD-XGBoost can significantly enhance the detection performance of epileptic seizures in terms of sensitivity, specificity, and accuracy.


Author(s):  
Zhenda Hu

Crude oil is one of the most powerful types of energy and the fluctuation of its price influences the global economy. Therefore, building a scientific model to accurately predict the price of crude oil is significant for investors, governments and researchers. However, the nonlinearity and nonstationarity of crude oil prices make it a challenging task for forecasting time series accurately. To handle the issue, this paper proposed a novel forecasting approach for crude oil prices that combines Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Long Short-Term Memory (LSTM) with attention mechanism and addition, following the well-known “decomposition and ensemble” framework. In addition, a news sentiment index based on Chinese crude oil news texts was constructed and added to the prediction of crude oil prices. And we made full use of attention mechanism to better integrate price series and sentiment series according to the characteristics of each component. To validate the performance of the proposed CEEMDAN-LSTM_att-ADD, we selected the Mean Absolute Percent Error (MAPE), the Root Mean Squared Error (RMSE) and the Diebold-Mariano (DM) statistic as evaluation criterias. Abundant experiments were conducted on West Texas Intermediate (WTI) spot crude oil prices. The proposed approach outperformed several state-of-the-art methods for forecasting crude oil prices, which proved the effectiveness of the CEEMDAN-LSTM_att-ADD with the news sentiment index.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1852 ◽  
Author(s):  
Jiang Wu ◽  
Feng Miu ◽  
Taiyong Li

Crude oil is one of the strategic energies and plays an increasingly critical role effecting on the world economic development. The fluctuations of crude oil prices are caused by various extrinsic and intrinsic factors and usually demonstrate complex characteristics. Therefore, it is a great challenge for accurately forecasting crude oil prices. In this study, a self-optimizing ensemble learning model incorporating the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), sine cosine algorithm (SCA), and random vector functional link (RVFL) neural network, namely ICEEMDAN-SCA-RVFL, is proposed to forecast crude oil prices. Firstly, we employ ICEEMDAN to decompose the raw series of crude oil prices into a group of relatively simple subseries. Secondly, RVFL is used to forecast the target values for each decomposed subseries individually. Due to the complex parameter settings of ICEEMDAN and RVFL, SCA is introduced to optimize the parameters for ICEEMDAN and RVFL in the above decomposition and prediction stages simultaneously. Finally, we assemble the predicted values of all individual subseries as the final predicted values of crude oil prices. Our proposed ICEEMDAN-SCA-RVFL significantly outperforms the single and ensemble benchmark models, as demonstrated by a case study conducted using the time series of West Texas Intermediate (WTI) daily crude oil spot prices.


2011 ◽  
pp. 63-73
Author(s):  
Rajendra Mahunta

In this new era of economic growth, the exceptional increase in the crude oil prices is one of the significant developments that affect the global economy. Crude oil is an important raw material used for manufacturing sectors, so that increase in the price of oil is bound to warn the economy with inflationary inclination. The study examine the long-term relationships between CNX NIFTY FIFTY index of National Stock Exchange and crude price by using various econometric test. The surge in crude oil prices during recent years has generated a lot of interest in the relationship between oil price and equity markets. The study covers the period between 01.01.2010 and 31.12.2014 and was performed with data consisting of 1245 days. The empirical results show there was a cointegrated long-term relationship between CNX index and crude price. Granger causality results reveal that there is unidirectional causality exists and crude oil price causes NSE (CNX) but NSE (CNX) does not cause oil price.


2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Peng Xu ◽  
Muhammad Aamir ◽  
Ani Shabri ◽  
Muhammad Ishaq ◽  
Adnan Aslam ◽  
...  

Accurate forecasting for the crude oil price is important for government agencies, investors, and researchers. To cope with this issue, in this paper, a new paradigm is designed for the reconstruction of intrinsic mode functions (IMFs) of decomposition and ensemble models to reduce the complexity in computation and to enhance the forecasting accuracy. Decomposition and ensemble methodologies significantly enhance the forecasting accuracy under the framework of “divide and conquer” with the proposed reconstruction of IMFs method. The proposed approach used the autocorrelation at lag 1 of all IMFs for the reconstruction. The ensemble empirical mode decomposition (EEMD) technique is employed to decompose the data into different IMFs. Models that utilized the decomposed data relatively perform well, as compared to its application to the undecomposed data. However, sometimes, the decomposition may produce poor results due to the error accumulation at the end. Thus, in this study, the reconstruction of IMFs is proposed for minimizing the aforementioned error, thereby increasing the forecasting accuracy. The Brent and West Texas Intermediate (WTI) datasets (daily and weekly) are exploited to compare the forecasting performance of autoregressive integrated moving average (ARIMA) along with artificial neural network (ANN) models with the decomposed data. The results have proven that the new paradigm of reconstruction of IMFs through autocorrelation was a better and simple strategy that significantly improved the performance of single models including ARIMA and ANN. Hence, it is concluded that the proposed model takes less computational time and achieved higher forecasting accuracy with the reconstruction of IMFs as opposed to using all IMFs.


2022 ◽  
Vol 9 (1) ◽  
pp. 27-33
Author(s):  
Alshdadi et al. ◽  

Coronavirus (COVID-19) has turned to be an alarm for the whole world both in terms of health and economics. It is striking the global economy and increasing the unpredictability of the financial market in several ways. Significantly, the pandemic spread stimulated the social distancing which led to the lockdown of the countries’ businesses, financial markets, and daily life events. International oil markets have accommodated the crude oil prices during the early COVID-19 period. However, after the first 50 days, Saudi Arabia has surged the market with oil, which caused a certain decrease in crude oil prices, internationally. Saudi Arabia is one of the biggest oil reserves in the world. International trade is based on oil reservoirs which in turn, have been significantly dislodged by the pandemic. Therefore, it is crucial to study the impact of COVID-19 on the international oil market. The purpose of this study is to investigate the short-term and long-term impact of COVID-19 on the international oil market. The daily crude oil price data is used to analyze the impact of daily price fluctuation over COVID-19 surveillance variables. The correlation between surveillance variables and international crude oil prices is calculated and analyzed. Consequently, the project will help in stabilizing the expected world economic crises and particularly will provide the implications for the policymakers in the oil market.


Sign in / Sign up

Export Citation Format

Share Document