scholarly journals DOA Estimation of Two-Dimensional Coherently Distributed Sources Based on Spatial Smoothing of Uniform Rectangular Arrays

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Tao Wu ◽  
Yiwen Li ◽  
Xiaofeng Zhang ◽  
Yijie Huang ◽  
Qingyue Gu ◽  
...  

Aiming at the direction-of-arrival (DOA) estimation of two-dimensional (2D) coherently distributed (CD) sources which are coherent with each other, we explore the propagator method based on spatial smoothing of a uniform rectangular array (URA). The rotational invariance relationships with respect to the nominal azimuth and nominal elevation are obtained under the small angular spreads assumption. A propagator operator is constructed through spatial smoothing of sample covariance matrices firstly. Then, combination of propagator and identical matrix is divided according to rotational operators, and the nominal angles can be obtained through eigendecomposition lastly. Realizing angle matching automatically, the proposed method can estimate multiple DOAs of 2D coherent CD sources without spectral peak searching and prior knowledge of deterministic angular signal distribution function. Simulations are conducted to verify the effectiveness of the proposed method.

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Wu Wei ◽  
Xu Le ◽  
Zhang Xiaofei ◽  
Li Jianfeng

In this paper, the topic of coherent two-dimensional direction of arrival (2D-DOA) estimation is investigated. Our study jointly utilizes the compressed sensing (CS) technique and the parallel profiles with linear dependencies (PARALIND) model and presents a 2D-DOA estimation algorithm for coherent sources with the uniform rectangular array. Compared to the traditional PARALIND decomposition, the proposed algorithm owns lower computational complexity and smaller data storage capacity due to the process of compression. Besides, the proposed algorithm can obtain autopaired azimuth angles and elevation angles and can achieve the same estimation performance as the traditional PARALIND, which outperforms some familiar algorithms presented for coherent sources such as the forward backward spatial smoothing-estimating signal parameters via rotational invariance techniques (FBSS-ESPRIT) and forward backward spatial smoothing-propagator method (FBSS-PM). Extensive simulations are provided to validate the effectiveness of the proposed CS-PARALIND algorithm.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ming Zhou ◽  
Xiaofei Zhang ◽  
Xiaofeng Qiu ◽  
Chenghua Wang

A novel algorithm is proposed for two-dimensional direction of arrival (2D-DOA) estimation with uniform rectangular array using reduced-dimension propagator method (RD-PM). The proposed algorithm requires no eigenvalue decomposition of the covariance matrix of the receive data and simplifies two-dimensional global searching in two-dimensional PM (2D-PM) to one-dimensional local searching. The complexity of the proposed algorithm is much lower than that of 2D-PM. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm and conventional PM algorithms, also very close to 2D-PM. The angle estimation error and Cramér-Rao bound (CRB) are derived in this paper. Furthermore, the proposed algorithm can achieve automatically paired 2D-DOA estimation. The simulation results verify the effectiveness of the algorithm.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 354 ◽  
Author(s):  
Tao Wu ◽  
Xiaofeng Zhang ◽  
Yiwen Li ◽  
Zhenghong Deng ◽  
Yijie Huang

Considering coherently-distributed (CD) sources are correlated with each other, a two-dimensional (2D) coherent CD source model is proposed according to the characteristics of an underwater acoustic channel. Under the assumption of small angular spreads, rotational invariance relationships within and between subarrays of double parallel linear arrays are derived. As the covariance matrix of spatial smoothing obtained from receive vectors expressed by rotational invariance relationships is proven to be full rank, decoherence of the 2D coherent CD source is proposed by spatial smoothing of the double parallel linear arrays. A propagator method base on spatial smoothing (SS-PM) and estimation of signal parameters via rotational invariance techniques (ESPRIT) base on spatial smoothing (SS-ESPRIT) method established by covariance matrix of spatial smoothing are proposed. The proposed methods do not require peak-searching, angles matching and information of deterministic angular signal distribution function. Simulations are conducted to verify the effectiveness of the proposed methods.


2019 ◽  
Vol 28 (03) ◽  
pp. 1950049
Author(s):  
Lingyun Xu ◽  
Fangqing Wen

Two-dimensional direction-of-arrival (2D-DOA) estimation for uniform rectangular array (URA) is a canonical problem with numerous applications, e.g., wireless communications, sonar and radar systems. The conventional 2D-DOA estimators usually are derived with the assumption of ideal arrays. However, in practice, the arrays may not be well calibrated and suffer from unknown mutual coupling. Using the conventional estimators may lead to low accuracy estimation and high computational complexity in the condition of large number of array elements. In this paper, a novel real-valued parallel factor (PARAFAC) decomposition algorithm is proposed to tackle this problem. The proposed algorithm has better angle estimation performance than the multiple signal classification (MUSIC) algorithm, estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm and conventional PARAFAC algorithm. But it has lower complexity than MUSIC algorithm. Moreover, the proposed algorithm can obtain automatically paired 2D-DOA estimation, and it is suitable to coherent or closely spaced signals and can eliminate the mutual coupling. Simulation results verify the effectiveness of the proposed algorithm.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Lei Sun ◽  
Minglei Yang ◽  
Baixiao Chen

Sparse planar arrays, such as the billboard array, the open box array, and the two-dimensional nested array, have drawn lots of interest owing to their ability of two-dimensional angle estimation. Unfortunately, these arrays often suffer from mutual-coupling problems due to the large number of sensor pairs with small spacing d (usually equal to a half wavelength), which will degrade the performance of direction of arrival (DOA) estimation. Recently, the two-dimensional half-open box array and the hourglass array are proposed to reduce the mutual coupling. But both of them still have many sensor pairs with small spacing d, which implies that the reduction of mutual coupling is still limited. In this paper, we propose a new sparse planar array which has fewer number of sensor pairs with small spacing d. It is named as the thermos array because its shape seems like a thermos. Although the resulting difference coarray (DCA) of the thermos array is not hole-free, a large filled rectangular part in the DCA can be facilitated to perform spatial-smoothing-based DOA estimation. Moreover, it enjoys closed-form expressions for the sensor locations and the number of available degrees of freedom. Simulations show that the thermos array can achieve better DOA estimation performance than the hourglass array in the presence of mutual coupling, which indicates that our thermos array is more robust to the mutual-coupling array.


Sign in / Sign up

Export Citation Format

Share Document