scholarly journals Nonlocal Symmetry and Bäcklund Transformation of a Negative-Order Korteweg–de Vries Equation

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Jinxi Fei ◽  
Weiping Cao ◽  
Zhengyi Ma

The residual symmetry of a negative-order Korteweg–de Vries (nKdV) equation is derived through its Lax pair. Such residual symmetry can be localized, and the original nKdV equation is extended into an enlarged system by introducing four new variables. By using Lie’s first theorem, we obtain the finite transformation for the localized residual symmetry. Furthermore, we localize the linear superposition of multiple residual symmetries and construct n-th Bäcklund transformation for this nKdV equation in the form of the determinants.

2017 ◽  
Vol 72 (9) ◽  
pp. 863-871 ◽  
Author(s):  
Zheng-Yi Ma ◽  
Jin-Xi Fei ◽  
Jun-Chao Chen

AbstractThe residual symmetry of the (2+1)-dimensional Benney system is derived from the truncated Painlevé expansion. Such residual symmetry is localised and the original Benney equation is extended into an enlarged system by introducing four new variables. By using Lies first theorem, we obtain the finite transformation for the localised residual symmetry. More importantly, we further localise the linear superposition of multiple residual symmetries and construct the nth Bäcklund transformation for the Benney system in the form of the determinant. Moreover, it is proved that the (2+1)-dimensional Benney system is consistent tanh expansion (CTE) solvable. The exact interaction solutions between solitons and any other types of potential Burgers waves are also obtained, which include soliton-error function waves, soliton-periodic waves, and so on.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1365 ◽  
Author(s):  
Haifeng Wang ◽  
Yufeng Zhang

In this article, we construct a new strongly coupled Boussinesq–Burgers system taking values in a commutative subalgebra Z 2 . A residual symmetry of the strongly coupled Boussinesq–Burgers system is achieved by a given truncated Painlevé expansion. The residue symmetry with respect to the singularity manifold is a nonlocal symmetry. Then, we introduce a suitable enlarged system to localize the nonlocal residual symmetry. In addition, a Bäcklund transformation is obtained with the help of Lie’s first theorem. Further, the linear superposition of multiple residual symmetries is localized to a Lie point symmetry, and a N-th Bäcklund transformation is also obtained.


1982 ◽  
Vol 60 (11) ◽  
pp. 1599-1606 ◽  
Author(s):  
Henri-François Gautrin

A study of solutions of the Gel'fand–Levitan equation permits one to establish new Bäcklund transformations for the Korteweg–de Vries equation. To a specific change in the scattering parameters, there corresponds a family of Bäcklund transformations. A means to construct these transformations is presented.


2020 ◽  
Vol 34 (25) ◽  
pp. 2050226 ◽  
Author(s):  
Yu-Qi Chen ◽  
Bo Tian ◽  
Qi-Xing Qu ◽  
He Li ◽  
Xue-Hui Zhao ◽  
...  

For a variable-coefficient Korteweg–de Vries equation in a lake/sea, two-layer liquid, atmospheric flow, cylindrical plasma or interactionless plasma, in this paper, we derive the bilinear Bäcklund transformation, non-isospectral Ablowitz–Kaup–Newell–Segur system and infinite conservation laws for the wave amplitude under certain constraints among the external force, dissipation, nonlinearity, dispersion and perturbation.


2020 ◽  
Vol 34 (26) ◽  
pp. 2050288
Author(s):  
Jun Cai Pu ◽  
Yong Chen

The nonlocal symmetry of the integrable Boussinesq equation is derived by the truncated Painlevé method. The nonlocal symmetry is localized to the Lie point symmetry by introducing auxiliary-dependent variables and the finite symmetry transformation related to the nonlocal symmetry is presented. The multiple nonlocal symmetries are obtained and localized base on the linear superposition principle, then the determinant representation of the [Formula: see text]th Bäcklund transformation is provided. The integrable Boussinesq equation is also proved to be consistent tanh expansion (CTE) form and accurate interaction solutions among solitons and other types of nonlinear waves are given out analytically and graphically by the CTE method. The associated structure may be related to large variety of real physical phenomena.


2017 ◽  
Vol 72 (3) ◽  
pp. 217-222 ◽  
Author(s):  
Jin-Xi Fei ◽  
Wei-Ping Cao ◽  
Zheng-Yi Ma

AbstractThe non-local residual symmetry for the classical Korteweg-de Vries equation is derived by the truncated Painlevé analysis. This symmetry is first localised to the Lie point symmetry by introducing the auxiliary dependent variables. By using Lie’s first theorem, we then obtain the finite transformation for the localised residual symmetry. Based on the consistent tanh expansion method, some exact interaction solutions among different non-linear excitations are explicitly presented finally. Some special interaction solutions are investigated both in analytical and graphical ways at the same time.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Haifeng Wang ◽  
Yufeng Zhang

In this article, we mainly apply the nonlocal residual symmetry analysis to a (2 + 1)-dimensional strongly coupled Burgers system, which is defined by us through taking values in a commutative subalgebra. On the basis of the general theory of Painlevé analysis, we get a residual symmetry of the strongly coupled Burgers system. Then, we introduce a suitable enlarged system to localize the nonlocal residual symmetry. In addition, a Bäcklund transformation is derived by Lie’s first theorem. Further, the linear superposition of the multiple residual symmetries is localized to a Lie point symmetry, and an N-th Bäcklund transformation is also obtained.


Sign in / Sign up

Export Citation Format

Share Document