scholarly journals Life-Cycle Assessment of High-Strength Concrete Mixtures with Copper Slag as Sand Replacement

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Aysegul Petek Gursel ◽  
Claudia Ostertag

Aggregate consumption rates have now exceeded natural renewal rates, signaling shortages both locally and globally. Even more concerning is that the worldwide markets for construction aggregates are projected to grow at an annual rate of 5.2% in the near future. This increase is attributed to rapid population growth coupled with the economic development worldwide. In terms of material availability, one of the most vulnerable regions is the Asia-Pacific region specifically, Singapore, where there is higher demand but limited availability of natural sand and gravel for use as aggregates in concrete construction projects. This paper focuses mainly on the environmental impacts of fine aggregate alternatives used in high-strength concrete applications in Singapore, which is one of the major global importers of natural sand following China. Singapore has been experiencing political and environmental challenges linked to the shortage of natural sand use as aggregates, even while the demand is increasing in the construction sector. Copper slag, a readily available waste material from shipyards in Singapore, is a possible replacement material for a portion of the natural sand in concrete mixtures, thus sustaining the projected growth in the region. A life-cycle assessment approach is applied to investigate the environmental impacts of copper slag and its alternative use as natural sand in high-strength concrete applications in Singapore. The system boundary consists of the major production processes of concrete constituents (including Portland cement and fine and coarse aggregates, with CS considered as fine aggregate) from a cradle-to-gate perspective, consisting of relevant life-cycle phases of raw materials extraction, transportation, and production processes at the relevant facility where the production occurs. Output from the assessment is provided in terms of embodied energy use and air emissions of concrete mixes with varying percentages of copper slag as fine aggregate. Results show that environmental impacts of aggregates decrease with the increasing substitution rate of natural sand with copper slag when calculated on the basis per unit volume of the concrete mix. For example, 40% and 100% sand replacements with copper slag result in a reduction of 8% and 40% in embodied energy, 12% and 30% in global warming potential, 8% and 41% in acidification, and 7% and 35% in particulate matter formation, respectively. Normalized impacts (i.e., normalized with respect to compressive strength) are observed to remain at almost similar levels for concrete mixes with up to 40% natural sand having been replaced with copper slag. Therefore, it is recommended that replacement of fine aggregates by 40–50% of copper slag (by weight) will produce concrete mixtures with comparable environmental impacts while maintaining feasible durability and strength properties.

Author(s):  
Jamshed Alam

An experimental analysis was conducted to study the effects of using copper slag as a fine aggregate (FA) and the effect of fly ash as partial replacement of cement on the properties high strength concrete. In this analysis total ten concrete mixtures were prepared, out of which five mixes containing different proportions of copper slag ranging from 0% (for the control mix) to 75% were prepared and remaining five mixes containing fly ash as partial replacement of cement ranging from 6% to 30% (all mixes contains 50% copper slag as sand replacements). Concrete matrix were tested for compressive strength, tensile strength and flexural strength tests. Addition of copper slag as sand replacement up to 50% yielded comparable strength with that of the control matrix. However, further additions of copper slag, caused reduction in strength due to an increment of the free water content in the mix. Concrete mix with 75% copper slag replacement gave the lowest compressive strength value of approximately 80 MPa at 28 days curing period, which is almost 4% more than the strength of the control mix. For this concrete containing 50% copper slag, fly ash is introduced in the concrete to achieve the better compressive, split and flexural strengths. It was also observed that, introduction of the fly ash gave better results than concrete containing 50% copper slag. When concrete prepared with 18 % of fly ash, the strength has increased approximately 4%, and strength decreased with further replacements of the cement with fly ash. Hence, it is suggested that 50% of copper slag can be used as replacement of sand and 18% fly ash can be used as replacement of cement in order to obtain high strength concrete.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 222 ◽  
Author(s):  
Haitham Al-Thairy

The shortage and high cost of quarries sand in some regions around the world has motivated engineers and researchers to investigate the possibility and feasibility of using other materials to be used as a fine aggregate in concrete mixtures. The main objective of this research is to experimentally investigate the effect of using river sand as a partial replacement of the ordinary quarries sand on the mechanical properties of normal and high strength concrete. Nine concrete mixtures were prepared and tested in terms of fresh and hardened properties using different replacement ratios of the required proportion of the normal sand. Four replacement ratios were used for normal strength concrete (NSC) which are: 0%, 25%, 50% and 75%, whereas, five replacement ratios were used for high strength concrete (HSC) namely: 0%, 35%, 60% and 90%. For each strength grade, the test parameters of the prepared mixtures included compressive and tensile strength. The experimental test results have revealed that it is possible to obtain a normal and high strength concrete with acceptable compressive and flexural strengths values by using river sand with replacement ratios up to 25% and 35% for NSC and HSC, respectively. When the replacement ratios were increased to more than the aforementioned ratios, the strength of the concrete decreased accordingly.  


2009 ◽  
Vol 23 (6) ◽  
pp. 2132-2140 ◽  
Author(s):  
Khalifa S. Al-Jabri ◽  
Makoto Hisada ◽  
Abdullah H. Al-Saidy ◽  
S.K. Al-Oraimi

Sign in / Sign up

Export Citation Format

Share Document