scholarly journals Preparation and Characterization of Coaxial Electrospinning rhBMP2-Loaded Nanofiber Membranes

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
He Zhao ◽  
Yali Ma ◽  
Dahui Sun ◽  
Wendi Ma ◽  
Jihang Yao ◽  
...  

DEX and rhBMP2-loaded core-shell nanofiber membranes were synthesized by electrospinning method in one step. Zein/PLLA, Zein-DEX/PLLA, Zein/PLLA-rhBMP2, and Zein-DEX/PLLA-rhBMP2 were fabricated; and morphology, hydrophilicity, mechanics properties, in vitro drug release behavior, cell proliferation, and osteogenic differentiation were investigated. The results showed that the dual-release system containing rhBMP2 and DEX prepared by electrospinning had rough surface, constant drug release behavior, and could also significantly promote cell proliferation and osteogenic differentiation of RMSCs, indicating that the scaffolds we fabricated might be suitable for bone tissue engineering.

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2591
Author(s):  
Thuan Thi Duong ◽  
Antti Isomäki ◽  
Urve Paaver ◽  
Ivo Laidmäe ◽  
Arvo Tõnisoo ◽  
...  

Berberine (BBR) is a poorly water-soluble quaternary isoquinoline alkaloid of plant origin with potential uses in the drug therapy of hypercholesterolemia. To tackle the limitations associated with the oral therapeutic use of BBR (such as a first-pass metabolism and poor absorption), BBR-loaded liposomes were fabricated by ethanol-injection and thin-film hydration methods. The size and size distribution, polydispersity index (PDI), solid-state properties, entrapment efficiency (EE) and in vitro drug release of liposomes were investigated. The BBR-loaded liposomes prepared by ethanol-injection and thin-film hydration methods presented an average liposome size ranging from 50 nm to 244 nm and from 111 nm to 449 nm, respectively. The PDI values for the liposomes were less than 0.3, suggesting a narrow size distribution. The EE of liposomes ranged from 56% to 92%. Poorly water-soluble BBR was found to accumulate in the bi-layered phospholipid membrane of the liposomes prepared by the thin-film hydration method. The BBR-loaded liposomes generated by both nanofabrication methods presented extended drug release behavior in vitro. In conclusion, both ethanol-injection and thin-film hydration nanofabrication methods are feasible for generating BBR-loaded oral liposomes with a uniform size, high EE and modified drug release behavior in vitro.


2007 ◽  
Vol 1054 ◽  
Author(s):  
Chang Yao ◽  
Thomas J Webster

ABSTRACTThe surface layer of titanium implants, i.e. titanium dioxide, is responsible for the inertness of titanium-based implants within the human body. However, their cytocompatibility properties and long-term efficacy are limited without further surface engineering since the average functional lifetime of an orthopedic implant is only 10 to 15 years. In this study, an electrochemical method known as anodization was used to create titania nanotubular structures on titanium implant surfaces. These nanotubes were about 60 nm wide (inner diameter) and 200 nm deep. In vitro studies found that anodized surfaces consisting of titania nanotube arrays were favored by bone-forming cells (osteoblasts) compared to unanodized surfaces. These titania nano-tubular structures were utilized here as novel drug release delivery systems. It is proposed that the system designed here can have multi-functional drug release to inhibit infection and wound inflammation while increasing new bone formation. For this purpose, antibiotic drugs (penicillin and streptomycin) were loaded into these nanotubular structures by physical adsorption. To mediate interactions between drug molecules and nanotube walls, anodized titanium nanotubes were modified by silanization to possess amine or methyl groups on their surface instead of −OH groups. Results showed increased hydrophobicity of chemically modified titania nanotubes (methyl > amine > hydroxyl terminated surface). These drug loaded substrates were soaked in phosphate buffered solution in a simulated body environment to determine drug release behavior. Buffer solutions were collected and replaced every day. The eluted drug amounts were measured spectroscopically. Results showed more antibiotic penicillin and streptomycin released from chemically modified nanotubes compared to unanodized titanium substrates; specifically, titania anodized nanotubes functionalized with −OH groups did quite well. In this manner, this study advances titanium currently used in orthopedics to possess drug release behavior which can improve orthopedic implant efficacy.


2018 ◽  
Vol 6 (7) ◽  
pp. 1035-1043 ◽  
Author(s):  
Jian He ◽  
Lisha Ai ◽  
Xin Liu ◽  
Hao Huang ◽  
Yuebin Li ◽  
...  

The NIR-laser-driven plasmonic photothermal and sustained drug release behavior of CuS–PTX/SiO2 nanocapsules show great synergistic chemo-photothermal therapeutic effects on cancer cells in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document