Runtime analysis of discrete particle swarm optimization algorithms: A survey

2019 ◽  
Vol 61 (4) ◽  
pp. 177-185
Author(s):  
Moritz Mühlenthaler ◽  
Alexander Raß

Abstract A discrete particle swarm optimization (PSO) algorithm is a randomized search heuristic for discrete optimization problems. A fundamental question about randomized search heuristics is how long it takes, in expectation, until an optimal solution is found. We give an overview of recent developments related to this question for discrete PSO algorithms. In particular, we give a comparison of known upper and lower bounds of expected runtimes and briefly discuss the techniques used to obtain these bounds.

2011 ◽  
Vol 383-390 ◽  
pp. 7208-7213
Author(s):  
De Kun Tan

To overcome the shortage of standard Particle Swarm Optimization(SPSO) on premature convergence, Quantum-behaved Particle Swarm Optimization (QPSO) is presented to solve engineering constrained optimization problem. QPSO algorithm is a novel PSO algorithm model in terms of quantum mechanics. The model is based on Delta potential, and we think the particle has the behavior of quanta. Because the particle doesn’t have a certain trajectory, it has more randomicity than the particle which has fixed path in PSO, thus the QPSO more easily escapes from local optima, and has more capability to seek the global optimal solution. In the period of iterative optimization, outside point method is used to deal with those particles that violate the constraints. Furthermore, compared with other intelligent algorithms, the QPSO is verified by two instances of engineering constrained optimization, experimental results indicate that the algorithm performs better in terms of accuracy and robustness.


2021 ◽  
Author(s):  
Moritz Mühlenthaler ◽  
Alexander Raß ◽  
Manuel Schmitt ◽  
Rolf Wanka

AbstractMeta-heuristics are powerful tools for solving optimization problems whose structural properties are unknown or cannot be exploited algorithmically. We propose such a meta-heuristic for a large class of optimization problems over discrete domains based on the particle swarm optimization (PSO) paradigm. We provide a comprehensive formal analysis of the performance of this algorithm on certain “easy” reference problems in a black-box setting, namely the sorting problem and the problem OneMax. In our analysis we use a Markov model of the proposed algorithm to obtain upper and lower bounds on its expected optimization time. Our bounds are essentially tight with respect to the Markov model. We show that for a suitable choice of algorithm parameters the expected optimization time is comparable to that of known algorithms and, furthermore, for other parameter regimes, the algorithm behaves less greedy and more explorative, which can be desirable in practice in order to escape local optima. Our analysis provides a precise insight on the tradeoff between optimization time and exploration. To obtain our results we introduce the notion of indistinguishability of states of a Markov chain and provide bounds on the solution of a recurrence equation with non-constant coefficients by integration.


2021 ◽  
Vol 11 (2) ◽  
pp. 839
Author(s):  
Shaofei Sun ◽  
Hongxin Zhang ◽  
Xiaotong Cui ◽  
Liang Dong ◽  
Muhammad Saad Khan ◽  
...  

This paper focuses on electromagnetic information security in communication systems. Classical correlation electromagnetic analysis (CEMA) is known as a powerful way to recover the cryptographic algorithm’s key. In the classical method, only one byte of the key is used while the other bytes are considered as noise, which not only reduces the efficiency but also is a waste of information. In order to take full advantage of useful information, multiple bytes of the key are used. We transform the key into a multidimensional form, and each byte of the key is considered as a dimension. The problem of the right key searching is transformed into the problem of optimizing correlation coefficients of key candidates. The particle swarm optimization (PSO) algorithm is particularly more suited to solve the optimization problems with high dimension and complex structure. In this paper, we applied the PSO algorithm into CEMA to solve multidimensional problems, and we also add a mutation operator to the optimization algorithm to improve the result. Here, we have proposed a multibyte correlation electromagnetic analysis based on particle swarm optimization. We verified our method on a universal test board that is designed for research and development on hardware security. We implemented the Advanced Encryption Standard (AES) cryptographic algorithm on the test board. Experimental results have shown that our method outperforms the classical method; it achieves approximately 13.72% improvement for the corresponding case.


2020 ◽  
Vol 10 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Neeti Kashyap ◽  
A. Charan Kumari ◽  
Rita Chhikara

AbstractWeb service compositions are commendable in structuring innovative applications for different Internet-based business solutions. The existing services can be reused by the other applications via the web. Due to the availability of services that can serve similar functionality, suitable Service Composition (SC) is required. There is a set of candidates for each service in SC from which a suitable candidate service is picked based on certain criteria. Quality of service (QoS) is one of the criteria to select the appropriate service. A standout amongst the most important functionality presented by services in the Internet of Things (IoT) based system is the dynamic composability. In this paper, two of the metaheuristic algorithms namely Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are utilized to tackle QoS based service composition issues. QoS has turned into a critical issue in the management of web services because of the immense number of services that furnish similar functionality yet with various characteristics. Quality of service in service composition comprises of different non-functional factors, for example, service cost, execution time, availability, throughput, and reliability. Choosing appropriate SC for IoT based applications in order to optimize the QoS parameters with the fulfillment of user’s necessities has turned into a critical issue that is addressed in this paper. To obtain results via simulation, the PSO algorithm is used to solve the SC problem in IoT. This is further assessed and contrasted with GA. Experimental results demonstrate that GA can enhance the proficiency of solutions for SC problem in IoT. It can also help in identifying the optimal solution and also shows preferable outcomes over PSO.


2018 ◽  
Vol 6 (6) ◽  
pp. 346-356
Author(s):  
K. Lenin

This paper projects Volition Particle Swarm Optimization (VP) algorithm for solving optimal reactive power problem. Particle Swarm Optimization algorithm (PSO) has been hybridized with the Fish School Search (FSS) algorithm to improve the capability of the algorithm. FSS presents an operator, called as collective volition operator, which is capable to auto-regulate the exploration-exploitation trade-off during the algorithm execution. Since the PSO algorithm converges faster than FSS but cannot auto-adapt the granularity of the search, we believe the FSS volition operator can be applied to the PSO in order to mitigate this PSO weakness and improve the performance of the PSO for dynamic optimization problems. In order to evaluate the efficiency of the proposed Volition Particle Swarm Optimization (VP) algorithm, it has been tested in standard IEEE 30 bus test system and compared to other reported standard algorithms.  Simulation results show that Volition Particle Swarm Optimization (VP) algorithm is more efficient then other algorithms in reducing the real power losses with control variables are within the limits.


2021 ◽  
Vol 21 (1) ◽  
pp. 62-72
Author(s):  
R. B. Madhumala ◽  
Harshvardhan Tiwari ◽  
Verma C. Devaraj

Abstract Efficient resource allocation through Virtual machine placement in a cloud datacenter is an ever-growing demand. Different Virtual Machine optimization techniques are constructed for different optimization problems. Particle Swam Optimization (PSO) Algorithm is one of the optimization techniques to solve the multidimensional virtual machine placement problem. In the algorithm being proposed we use the combination of Modified First Fit Decreasing Algorithm (MFFD) with Particle Swarm Optimization Algorithm, used to solve the best Virtual Machine packing in active Physical Machines to reduce energy consumption; we first screen all Physical Machines for possible accommodation in each Physical Machine and then the Modified Particle Swam Optimization (MPSO) Algorithm is used to get the best fit solution.. In our paper, we discuss how to improve the efficiency of Particle Swarm Intelligence by adapting the efficient mechanism being proposed. The obtained result shows that the proposed algorithm provides an optimized solution compared to the existing algorithms.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 357 ◽  
Author(s):  
Shu-Kai S. Fan ◽  
Chih-Hung Jen

Particle swarm optimization (PSO) is a population-based optimization technique that has been applied extensively to a wide range of engineering problems. This paper proposes a variation of the original PSO algorithm for unconstrained optimization, dubbed the enhanced partial search particle swarm optimizer (EPS-PSO), using the idea of cooperative multiple swarms in an attempt to improve the convergence and efficiency of the original PSO algorithm. The cooperative searching strategy is particularly devised to prevent the particles from being trapped into the local optimal solutions and tries to locate the global optimal solution efficiently. The effectiveness of the proposed algorithm is verified through the simulation study where the EPS-PSO algorithm is compared to a variety of exiting “cooperative” PSO algorithms in terms of noted benchmark functions.


Author(s):  
Shafiullah Khan ◽  
Shiyou Yang ◽  
Obaid Ur Rehman

Purpose The aim of this paper is to explore the potential of particle swarm optimization (PSO) algorithm to solve an electromagnetic inverse problem. Design/methodology/approach A modified PSO algorithm is designed. Findings The modified PSO algorithm is a more stable, robust and efficient global optimizer for solving the well-known benchmark optimization problems. The new mutation approach preserves the diversity of the population, whereas the proposed dynamic and adaptive parameters maintain a good balance between the exploration and exploitation searches. The numerically experimental results of two case studies demonstrate the merits of the proposed algorithm. Originality/value Some improvements, such as the design of a new global mutation mechanism and introducing a novel strategy for learning and control parameters, are proposed.


2016 ◽  
Vol 11 (1) ◽  
pp. 58-67 ◽  
Author(s):  
S Sarathambekai ◽  
K Umamaheswari

Discrete particle swarm optimization is one of the most recently developed population-based meta-heuristic optimization algorithm in swarm intelligence that can be used in any discrete optimization problems. This article presents a discrete particle swarm optimization algorithm to efficiently schedule the tasks in the heterogeneous multiprocessor systems. All the optimization algorithms share a common algorithmic step, namely population initialization. It plays a significant role because it can affect the convergence speed and also the quality of the final solution. The random initialization is the most commonly used method in majority of the evolutionary algorithms to generate solutions in the initial population. The initial good quality solutions can facilitate the algorithm to locate the optimal solution or else it may prevent the algorithm from finding the optimal solution. Intelligence should be incorporated to generate the initial population in order to avoid the premature convergence. This article presents a discrete particle swarm optimization algorithm, which incorporates opposition-based technique to generate initial population and greedy algorithm to balance the load of the processors. Make span, flow time, and reliability cost are three different measures used to evaluate the efficiency of the proposed discrete particle swarm optimization algorithm for scheduling independent tasks in distributed systems. Computational simulations are done based on a set of benchmark instances to assess the performance of the proposed algorithm.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xiaofeng Lv ◽  
Deyun Zhou ◽  
Ling Ma ◽  
Yuyuan Zhang ◽  
Yongchuan Tang

The fault rate in equipment increases significantly along with the service life of the equipment, especially for multiple fault. Typically, the Bayesian theory is used to construct the model of faults, and intelligent algorithm is used to solve the model. Lagrangian relaxation algorithm can be adopted to solve multiple fault diagnosis models. But the mathematical derivation process may be complex, while the updating method for Lagrangian multiplier is limited and it may fall into a local optimal solution. The particle swarm optimization (PSO) algorithm is a global search algorithm. In this paper, an improved Lagrange-particle swarm optimization algorithm is proposed. The updating of the Lagrangian multipliers is with the PSO algorithm for global searching. The difference between the upper and lower bounds is proposed to construct the fitness function of PSO. The multiple fault diagnosis model can be solved by the improved Lagrange-particle swarm optimization algorithm. Experiment on a case study of sensor data-based multiple fault diagnosis verifies the effectiveness and robustness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document