scholarly journals How Do Secondary Minerals in Granite Help Distinguish Paleo- from Present-Day Permeable Fracture Zones? Joint Interpretation of SWIR Spectroscopy and Geophysical Logs in the Geothermal Wells of Northern Alsace

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Carole Glaas ◽  
Jeanne Vidal ◽  
Patricia Patrier ◽  
Jean-François Girard ◽  
Daniel Beaufort ◽  
...  

The investigation of permeable hydrothermally altered and fractured zones and their distribution is a key issue for the understanding of fluid circulation in granitic rocks, on which the success of geothermal projects relies. Based on the use of short-wave infrared (SWIR) spectroscopy applied to rock cuttings coupled with interpretation of geophysical logs, we propose an investigation of the clay signature of fault and fracture zones (FZ) inside the granitic basement. This methodology was applied to two geothermal wells: GRT-2 from the Rittershoffen and GPK-1 from the Soultz-sous-Forêts (Soultz) geothermal sites, both located in the Upper Rhine Graben (URG). A total of 1430 SWIR spectra were acquired and analysed. Variations in the 2200 nm absorption band area are correlated with hydrothermal alteration grades. The 2200 nm absorption band area is found to reflect the illite quantity and its variations in the granitic basement. Low, stable values are observed in the unaltered granite facies, showing good reproducibility of the method, whereas scattered high values are associated with high hydrothermal alteration and FZs. Variations in the 2200 nm absorption band area were correlated with the gamma ray and electrical resistivity logs. This procedure allowed us to confirm that illite mainly controls the resistivity response except inside the permeable FZs, where the resistivity response is controlled by the geothermal brine. Thus, the architecture of these permeable FZs was described precisely by using a combination of the 2200 nm absorption band area data and the electrical resistivity log. Moreover, by correlation with other geophysical logs (temperature (T), porosity, and density), paleo-permeable and currently permeable FZs inside the reservoir were distinguished. The correlation of SWIR spectroscopy with electrical resistivity logs appears to be a robust tool for geothermal exploration in granitic reservoirs in the URG.

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Jeanne Vidal ◽  
Régis Hehn ◽  
Carole Glaas ◽  
Albert Genter

Identifying fluid circulation in fracture zones (FZs) is a key challenge in the extraction of deep geothermal heat from natural reservoirs in the Upper Rhine Graben. This study focuses on permeable FZs present within the granitic basement penetrated by deep geothermal well GPK-1 at Soultz and GRT-1 and GRT-2 at Rittershoffen (France). The various temperature (T) log datasets acquired from these wells during production and at equilibrium, with the associated flow logs, allow for the unique opportunity to interpret fluid circulation at the borehole scale. All permeable FZs identified by permeability indicators measured during drilling operations and from image logs spatially coincide with positive or negative T anomalies observed in the T logs during production and/or at equilibrium. However, within the FZs, partially open fractures act as narrower paths for circulation at different temperatures. These temperatures can even be estimated with confidence if the associated flow log is available. The polarity of the T anomalies correlates with the state of equilibrium of the well and thus can change over the well history. During production, the temperature of the water inflow through the fractures can be estimated relative to the mixture of water circulating below the fractures. At thermal equilibrium, the water temperature is estimated with respect to the temperature of the surrounding rock formation. Because temperature fluxes and geothermal fluids are intimately linked, T logs are a useful, reliable, and very sensitive tool to localize the inflow of geothermal water through FZs.


2009 ◽  
Vol 47 (4) ◽  
pp. 801-811 ◽  
Author(s):  
S. Morad ◽  
M. A.K. El-Ghali ◽  
M. A. Caja ◽  
K. Al-Ramadan ◽  
H. Mansurbeg

Geophysics ◽  
1961 ◽  
Vol 26 (3) ◽  
pp. 320-341
Author(s):  
J. R. Lishman

Salt beds have almost infinite electrical resistivity. They differ from other infinitely resistive beds in that they are usually soluble in drilling fluids, and give rise to enlarged boreholes. An infinitely resistive bed lying between shales may be recognized from the characteristic shape of the electric log resistivity curves, and the ratios of their readings. Any one of the curves may then be used to compute the borehole diameter, and hence decide whether the bed is salt. Where a washed out salt bed is adjacent to another infinitely resistive bed in which the borehole is to gauge, the configuration of the curves is very characteristic. Apparent resistivity ratios again help to identify the salt.


2019 ◽  
Vol 190 ◽  
pp. 13 ◽  
Author(s):  
Philippe Duringer ◽  
Coralie Aichholzer ◽  
Sergio Orciani ◽  
Albert Genter

Between 2012 and 2014, in Rittershoffen, in the Upper Rhine Graben, two geothermal boreholes (GRT-1 and GRT-2) reached the granitic basement at a depth of around 2150 m. The wells crossed about 1160 m of Cenozoic and 1050 m of Mesozoic. In the Cenozoic, these wells crossed the greatest part of the Eocene, the lower part of the Oligocene and a thinner Pliocene. The Quaternary is poorly represented (less than 10 m). In the Mesozoic, the wells crossed the Lower Dogger, the entire Lias and the entire Triassic. A reduced thickness of about 50 m of Upper Permian terminates the sedimentary column before entering into the granitic basement. A major erosional unconformity separates the Middle Jurassic from the Tertiary units (the Upper Jurassic, entire Cretaceous and Paleocene are absent). The Rittershoffen drilled doublets were the subject of particular attention concerning the acquisition of a very precise stratigraphic profile. In this paper, we give the recognition criteria for the fifty-seven formations crossed by the GRT-1 well and their upper and lower boundaries as well as their specific gamma ray signatures. The data are presented in four figures: a general complete log displaying the main sets and three detailed, precise logs showing the sedimentary formations overhanging the granitic basement: the Tertiary, the Jurassic, the Triassic, the Permian and the basement.


Sign in / Sign up

Export Citation Format

Share Document