scholarly journals A Method for Obtaining Optimal Path in Angle and Avoiding Collision for Robotic Belt Grinding

2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Tie Zhang ◽  
Xiaohong Liang ◽  
Ye Yu ◽  
Bin Zhang

The angular variation of the joints may be large, and collision between workpieces and tools may occur in robotic grinding. Therefore, this paper proposes an optimal robotic grinding path search algorithm based on the recursive method. The algorithm is optimized by changing the position of the tool coordinate system on the belt wheel; thus, the pose of the robot during grinding is adjusted. First, the position adjustment formula of the tool coordinate system is proposed, and a coordinate plane is established to describe the grinding path of the robot based on the position adjustment formula. Second, the ordinate value of this coordinate plane is dispersed to obtain the search field of the optimal robotic grinding path search algorithm. Third, an optimal robotic grinding path search algorithm is proposed based on the recursive method and single-step search process. Finally, the algorithm is implemented on the V-REP platform. Robotic grinding paths for V-shaped workpieces and S-shaped workpieces are generated using this algorithm, and a grinding experiment is performed. The experimental results show that the robotic grinding paths generated by this algorithm can smoothly complete grinding operations and feature a smaller angular variation of the joint than other methods and no collision.

2013 ◽  
Author(s):  
Eunju Kim ◽  
◽  
YONGZHE XU ◽  
Kyunjoo Lee ◽  
Jaesug Ki ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
De-Xin Yu ◽  
Zhao-Sheng Yang ◽  
Yao Yu ◽  
Xiu-Rong Jiang

Combined with improved Pallottino parallel algorithm, this paper proposes a large-scale route search method, which considers travelers’ route choice preferences. And urban road network is decomposed into multilayers effectively. Utilizing generalized travel time as road impedance function, the method builds a new multilayer and multitasking road network data storage structure with object-oriented class definition. Then, the proposed path search algorithm is verified by using the real road network of Guangzhou city as an example. By the sensitive experiments, we make a comparative analysis of the proposed path search method with the current advanced optimal path algorithms. The results demonstrate that the proposed method can increase the road network search efficiency by more than 16% under different search proportion requests, node numbers, and computing process numbers, respectively. Therefore, this method is a great breakthrough in the guidance field of urban road network.


2011 ◽  
Vol 121-126 ◽  
pp. 2030-2034
Author(s):  
Dong Zhang ◽  
Chao Yun ◽  
Ling Zhang

The precision is impacted when the robotic grinding path is discontinuous and the gripper needs to be replaced during manufacturing. In order to solve this problem, a new type PPPRRR grinding robot was proposed. The mathematical model for the robotic grinding paths was set up. The factors including the pose of the workpiece respect to the end joint and the position of contact wheel respect to the robot base frame {O}were analyzed to influence the grinding ability of the system. Base on the Monte Carlo method the posture and position factors above had been optimized, and the grinding ability of the system was increased. The optimization methods were proved right and workable by grinding golf head experiment.


Information ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 330
Author(s):  
Yinghui Meng ◽  
Qianying Zhi ◽  
Minghao Dong ◽  
Weiwei Zhang

The coordinates of nodes are very important in the application of wireless sensor networks (WSN). The range-free localization algorithm is the best method to obtain the coordinates of sensor nodes at present. Range-free localization algorithm can be divided into two stages: distance estimation and coordinate calculation. For reduce the error in the distance estimation stage, a node localization algorithm for WSN based on virtual partition and distance correction (VP-DC) is proposed in this paper. In the distance estimation stage, firstly, the distance of each hop on the shortest communication path between the unknown node and the beacon node is calculated with the employment of virtual partition algorithm; then, the length of the shortest communication path is obtained by summing the distance of each hop; finally, the unknown distance between nodes is obtained according to the optimal path search algorithm and the distance correction formula. This paper innovative proposes the virtual partition algorithm and the optimal path search algorithm, which effectively avoids the distance estimation error caused by hop number and hop distance, and improves the localization accuracy of unknown nodes.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
S. Hemalatha ◽  
P. Valsalal

Power system network can undergo outages during which there may be a partial or total blackout in the system. In that condition, transmission of power through the optimal path is an important problem in the process of reconfiguration of power system components. For a given set of generation, load pair, there could be many possible paths to transmit the power. The optimal path needs to consider the shortest path (minimum losses), capacity of the transmission line, voltage stability, priority of loads, and power balance between the generation and demand. In this paper, the Bellman Ford Algorithm (BFA) is applied to find out the optimal path and also the several alternative paths by considering all the constraints. In order to demonstrate the capability of BFA, it has been applied to a practical 230 kV network. This restorative path search guidance tool is quite efficient in finding the optimal and also the alternate paths for transmitting the power from a generating station to demand.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abhishek Kumar Kashyap ◽  
Dayal R. Parhi

Purpose This paper aims to outline and implement a novel hybrid controller in humanoid robots to map an optimal path. The hybrid controller is designed using the Owl search algorithm (OSA) and Fuzzy logic. Design/methodology/approach The optimum steering angle (OS) is used to deal with the obstacle located in the workspace, which is the output of the hybrid OSA Fuzzy controller. It is obtained by feeding OSA's output, i.e. intermediate steering angle (IS), in fuzzy logic. It is obtained by supplying the distance of obstacles from all directions and target distance from the robot's present location. Findings The present research is based on the navigation of humanoid NAO in complicated workspaces. Therefore, various simulations are performed in a 3D simulator in different complicated workspaces. The validation of their outcomes is done using the various experiments in similar workspaces using the proposed controller. The comparison between their outcomes demonstrates an acceptable correlation. Ultimately, evaluating the proposed controller with another existing navigation approach indicates a significant improvement in performance. Originality/value A new framework is developed to guide humanoid NAO in complicated workspaces, which is hardly seen in the available literature. Inspection in simulation and experimental workspaces verifies the robustness of the designed navigational controller. Considering minimum error ranges and near collaboration, the findings from both frameworks are evaluated against each other in respect of specified navigational variables. Finally, concerning other present approaches, the designed controller is also examined, and major modifications in efficiency have been reported.


Author(s):  
Ching-Kang Ing ◽  
Chin-Yi Lin ◽  
Po-Hsiang Peng ◽  
Yu-Ming Hsieh ◽  
Fan-Tien Cheng

Sign in / Sign up

Export Citation Format

Share Document