scholarly journals An Interrupted Sampling Scattered Wave Deception Jamming Method against Three-Channel SAR GMTI

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xin Chang ◽  
Chunxi Dong ◽  
Gao Weichen ◽  
Yan Zhao

An important problem is how to generate false moving targets, whose relocated azimuth position is similar to that of real moving targets. To solve this problem, an interrupted sampling scattered wave deception jamming method against three-channel synthetic aperture radar ground moving target indication (SAR GMTI) is proposed. A stationary jammer uses a controllable jammer antenna to generate verisimilar moving targets by controlling velocity and initial position of jammer beam footprint. The antenna sampled moves along the different tracks. For each track, the slant history of jamming signal is changed varying with different pulse recurrence intervals (PRI), and the movement of the footprint will introduce a Doppler frequency in jamming the signal. By analyzing parameters’ difference between echoes and jamming signal, the velocity and the initial position of the footprint will be calculated, and then the verisimilar false targets are generated. The effectiveness of the method is verified by simulation experiments.

2021 ◽  
Vol 13 (2) ◽  
pp. 177
Author(s):  
Jun Wan ◽  
Xiaoheng Tan ◽  
Zhanye Chen ◽  
Dong Li ◽  
Qinghua Liu ◽  
...  

Ground moving targets will typically be defocused because of the range migration (RM) and Doppler frequency migration (DFM) caused by the unknown relative motions between the platform of synthetic aperture radar (SAR) and the ground moving targets. The received signal of the ground moving target easily exhibits the Doppler ambiguity, and the Doppler ambiguity leads to the refocusing difficulty of ground moving targets. To address these problems, a SAR refocusing method of ground moving targets with Doppler ambiguity based on modified second-order keystone transform (MSOKT) and keystone transform (KT) is presented in this paper. Firstly, the second-order phase is separated by the time reversing process. Secondly, MSOKT is performed to compensate the range curvature migration and DFM, and then the coefficient of the second-order phase is estimated. Finally, a well-refocused result of the moving target is achieved after KT and the estimated Doppler ambiguity number are used to eliminate residual range walk migration. The proposed method can accurately remove RM and DFM and effectively focus the moving targets without residual correction errors. Moreover, the effects of Doppler ambiguity (including Doppler center blur and spectrum split) and blind speed sidelobe are further avoided. On the basis of the analysis of cross-term for the multiple target case, the identification strategy of spurious peak of cross-term is proposed. Additionally, the developed method can be sped up by nonuniform fast Fourier transform without the interpolation operation. The effectiveness of the proposed method is verified by both airborne and spaceborne real data processing results.


Sign in / Sign up

Export Citation Format

Share Document