scholarly journals Scattering of SH Waves by a Partially Debonded Cylindrical Inclusion in the Covering Layer

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Hui Qi ◽  
Yang Zhang ◽  
Fuqing Chu ◽  
Jing Guo

This article presents analytical solutions to the problem of dynamic stress concentration and the surface displacement of a partially debonded cylindrical inclusion in the covering layer under the action of a steady-state horizontally polarized shear wave (SH wave); these solutions are using the complex function method and wave function expansion method. By applying the large-arc assumption method, the straight line boundary of the half-space covering layer is transformed into a curved boundary. The wave field of the debonded inclusion is constructed utilizing a Fourier series and boundary conditions of continuity. The impact of debonding upon the dynamic stress concentration and surface displacement around the cylindrical concrete or steel inclusion is analyzed through numerical examples of the SH waves that are incident at normal angles, from a harder medium to a softer medium and from a softer medium to a harder medium. The examples show that various factors (including the medium parameters of the soil layers and the inclusion, the frequency of the incident waves, and the debonding situations) jointly affect the dynamic stress concentration factor and the surface displacement around the structure.

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Xiaojie Zhou ◽  
Qinghua Liang ◽  
Zhongxian Liu ◽  
Ying He

A viscous-slip interface model is proposed to simulate the contact state between a tunnel lining structure and the surrounding rock. The boundary integral equation method is adopted to solve the scattering of the plane SV wave by a tunnel lining in an elastic half-space. We place special emphasis on the dynamic stress concentration of the lining and the amplification effect on the surface displacement near the tunnel. Scattered waves in the lining and half-space are constructed using the fictitious wave sources close to the lining surfaces based on Green’s functions of cylindrical expansion and the shear wave source. The magnitudes of the fictitious wave sources are determined by viscous-slip boundary conditions, and then the total response is obtained by superposition of the free and scattered fields. The slip stiffness and viscosity coefficients at the lining-surrounding rock interface have a significant influence on the dynamic stress distribution and the nearby surface displacement response in the tunnel lining. Their influence is controlled by the incident wave frequency and angle. The hoop stress increases gradually in the inner wall of the lining as sliding stiffness increases under a low-frequency incident wave. In the high-frequency resonance frequency band, where incident wave frequency is consistent with the natural frequency of the soil column above the tunnel, the dynamic stress concentration effect is more significant when it is smaller. The dynamic stress concentration factor inside the lining decreases gradually as the viscosity coefficient increases. The spatial distribution and the displacement amplitudes of surface displacement near the tunnel change as incident wave frequency and angle increase. The effective dynamic analysis of the underground structure under an actual strong dynamic load should consider the slip effect at the lining-surrounding rock interface.


2010 ◽  
Vol 163-167 ◽  
pp. 4265-4268
Author(s):  
Zhi Gang Chen

The dynamic stress concentration on quadratic and U-shaped cavities in half space, which are similar to the cross-section of the tunnels, is solved in this paper impacted by SH-wave. The analytical solution for the cavity in elastic half space is gained by the complex function method. In the complex plane, the scattering wave which satisfies the zero-stress condition at the horizontal surface can be constructed, the problem can be inverted into a set of algebraic equations to solve coefficients of the constructed scattering wave by least square method. For the earthquake-resistance researches, the numerical examples of the dynamic stress concentration around the quadratic and U-shaped cavities impacted by SH-wave are given. The influences of the dynamic stress concentration by the incident wave number and angle, the depth and shape of the cavity are discussed. It is showed that the interaction among the wave, the surface and the shallow buried tunnels should be cared in half space. In this situation, the dynamic stress concentration around the tunnel is greater obvious than the whole space.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6878
Author(s):  
Huanhuan Xue ◽  
Chuanping Zhou ◽  
Gaofei Cheng ◽  
Junqi Bao ◽  
Maofa Wang ◽  
...  

Based on the magnetoacoustic coupled dynamics theory, the wave function expansion method is used to solve the problem of acoustic wave scattering and dynamic stress concentration around the two openings in e-type piezomagnetic composites. To deal with the multiple scattering between openings, the local coordinate method is introduced. The general analytical solution to the problem and the expression of the dynamic stress concentration are derived. As an example, the numerical results of the dynamic stress distribution around two openings with equal diameters are given. The effects of the parameters, such as the incident wave number and the spacing between the openings, on the dynamic stress concentration factor are analyzed.


2010 ◽  
Vol 452-453 ◽  
pp. 677-680
Author(s):  
Hong Liang Li ◽  
Hong Li

Multiple circular inclusions exists widely in natural media, engineering materials and modern municipal construction, and defects are usually found around the inclusions. When composite material with multiple circular inclusions and a crack is impacted by dynamic load, the scattering field will be produced. The problem of scattering of SH waves by multiple circular inclusions and a linear crack is one of the important and interesting questions in mechanical engineering and civil engineering for the latest decade. It is hard to obtain analytic solutions except for several simple conditions. In this paper, the method of Green’s function is used to investigate the problem of dynamic stress concentration of multiple circular inclusions and a linear crack for incident SH wave. The train of thoughts for this problem is that: Firstly, a Green’s function is constructed for the problem, which is a fundamental solution of displacement field for an elastic space possessing multiple circular inclusions while bearing out-of-plane harmonic line source force at any point: Secondly, in terms of the solution of SH-wave’s scattering by an elastic space with multiple circular inclusions, anti-plane stresses which are the same in quantity but opposite in direction to those mentioned before, are loaded at the region where the crack is in existent actually; Finally, the expressions of the displacement and stress are given when multiple circular inclusions and a linear crack exist at the same time. Then, by using the expression, an example is provided to show the effect of multiple circular inclusions and crack on the dynamic stress concentration.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 246
Author(s):  
Hui Qi ◽  
Fuqing Chu ◽  
Yang Zhang ◽  
Guohui Wu ◽  
Jing Guo

Wave diffusion in the composite soil layer with the lined tunnel structure is often encountered in the field of seismic engineering. The wave function expansion method is an effective method for solving the wave diffusion problem. In this paper, the wave function expansion method is used to present a semi-analytical solution to the shear horizontal (SH) wave scattering problem of a circular lined tunnel under the covering soil layer. Considering the existence of the covering soil layer, the great arc assumption (that is, the curved boundary instead of the straight-line boundary) is used to construct the wavefield in the composite soil layer. Based on the wave field and boundary conditions, an infinite linear equation system is established by adding the application of complex variable functions. The finite term is intercepted and solved, and the accuracy of the solution is analyzed. Although truncation is inevitable, due to the Bessel function has better convergence, a smaller truncation coefficient can achieve mechanical accuracy. Based on numerical examples, the influence of SH wave incident frequency, soil parameters, and lining thickness on the dynamic stress concentration factor of lining is analyzed. Compared with the SH wave scattering problem by lining in a single medium half-space, due to the existence of the cover layer and the influence of its stiffness, the dynamic stress of the lining can be increased or inhibited. In addition, the lining thickness has obvious different effects on the dynamic stress concentration coefficient of the inner and outer walls of different materials.


2011 ◽  
Vol 27 (1) ◽  
pp. 37-45 ◽  
Author(s):  
H. Qi ◽  
J. Yang ◽  
Y. Shi

ABSTRACTGreen's function and complex function methods are used here to investigate the problem of the scattering of SH-wave by a cylindrical inclusion near interface in bi-material half-space. Firstly, Green's function was constructed which was an essential solution of displacement field for an elastic right-angle space possessing a cylindrical inclusion while bearing out-of-plane harmonic line source load at any point of its vertical boundary. Secondly, the bi-material media was divided into two parts along the vertical interface using the idea of interface “conjunction”, then undetermined anti-plane forces were loaded at the linking sections respectively to satisfy continuity conditions, and a series of Fredholm integral equations of first kind for determining the unknown forces could be set up through continuity conditions on surface. Finally, some examples for dynamic stress concentration factor of the cylindrical elastic inclusion are given. Numerical results show that dynamic stress concentration factor is influenced by interfaces, free boundary and combination of different media parameters.


2011 ◽  
Vol 199-200 ◽  
pp. 945-948
Author(s):  
Xiao Lang Lv ◽  
Dian Kui Liu

An analytic method is developed for dynamic stress concentration of a subsurface elastic cylindrical inclusion below a semi-cylindrical hill under SH-wave. And the dynamic stress concentration factor (DSCF) is given by complex variable function. During the solution, a standing wave and scattered wave displacement functions are constructed in different parts respectively. All of these displacement functions should satisfy the boundary conditions of each part. Employed to the boundary conditions around the elastic cylindrical inclusion, a series of infinite algebraic equations about the problem can be obtained. The calculating results of DSCF around the elastic cylindrical inclusion are plotted to show the effects of some parameters on DSCF.


Sign in / Sign up

Export Citation Format

Share Document