scholarly journals Dynamic Reliability Management for FPGA-Based Systems

2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Jahanzeb Anwer ◽  
Sebastian Meisner ◽  
Marco Platzner

Radiation tolerance in FPGAs is an important field of research particularly for reliable computation in electronics used in aerospace and satellite missions. The motivation behind this research is the degradation of reliability in FPGA hardware due to single-event effects caused by radiation particles. Redundancy is a commonly used technique to enhance the fault-tolerance capability of radiation-sensitive applications. However, redundancy comes with an overhead in terms of excessive area consumption, latency, and power dissipation. Moreover, the redundant circuit implementations vary in structure and resource usage with the redundancy insertion algorithms as well as number of used redundant stages. The radiation environment varies during the operation time span of the mission depending on the orbit and space weather conditions. Therefore, the overheads due to redundancy should also be optimized at run-time with respect to the current radiation level. In this paper, we propose a technique called Dynamic Reliability Management (DRM) that utilizes the radiation data, interprets it, selects a suitable redundancy level, and performs the run-time reconfiguration, thus varying the reliability levels of the target computation modules. DRM is composed of two parts. The design-time tool flow of DRM generates a library of various redundant implementations of the circuit with different magnitudes of performance factors. The run-time tool flow, while utilizing the radiation/error-rate data, selects a required redundancy level and reconfigures the computation module with the corresponding redundant implementation. Both parts of DRM have been verified by experimentation on various benchmarks. The most significant finding we have from this experimentation is that the performance can be scaled multiple times by using partial reconfiguration feature of DRM, e.g., 7.7 and 3.7 times better performance results obtained for our data sorter and matrix multiplier case studies compared with static reliability management techniques. Therefore, DRM allows for maintaining a suitable trade-off between computation reliability and performance overhead during run-time of an application.

2013 ◽  
Vol 347-350 ◽  
pp. 1467-1472
Author(s):  
Wen Wei Huang ◽  
Gang Yao ◽  
Xiao Yan Qiu ◽  
Nian Liu ◽  
Guang Tang Chen

Optimization of restoration paths of power system after blackout is a multi-stage, multi-target, multi-variable combinatorial problem in the power system restoration. This paper presents a reasonable model and effectually method. The proposed model is considered as a typical partial minimum spanning tree problem from the mathematical point of view which considering all kinds of constraints. Improved data envelopment analysis (DEA) was used to get the weight which considering line charging reactive power, weather conditions, operation time and betweenness of transmission lines. The improved genetic algorithm method is employed to solve this problem. Finally, an example is given which proves the strategy of the line restoration can effectively handle the uncertainty of the system recovery process, to guarantee the system successfully restored after the catastrophic accidents.


2017 ◽  
Vol 76 (4) ◽  
pp. 963-975 ◽  
Author(s):  
Shamas Tabraiz ◽  
Sajjad Haydar ◽  
Paul Sallis ◽  
Sadia Nasreen ◽  
Qaisar Mahmood ◽  
...  

Intermittent backwashing and relaxation are mandatory in the membrane bioreactor (MBR) for its effective operation. The objective of the current study was to evaluate the effects of run-relaxation and run-backwash cycle time on fouling rates. Furthermore, comparison of the effects of backwashing and relaxation on the fouling behavior of membrane in high rate submerged MBR. The study was carried out on a laboratory scale MBR at high flux (30 L/m2·h), treating sewage. The MBR was operated at three relaxation operational scenarios by keeping the run time to relaxation time ratio constant. Similarly, the MBR was operated at three backwashing operational scenarios by keeping the run time to backwashing time ratio constant. The results revealed that the provision of relaxation or backwashing at small intervals prolonged the MBR operation by reducing fouling rates. The cake and pores fouling rates in backwashing scenarios were far less as compared to the relaxation scenarios, which proved backwashing a better option as compared to relaxation. The operation time of backwashing scenario (lowest cycle time) was 64.6% and 21.1% more as compared to continuous scenario and relaxation scenario (lowest cycle time), respectively. Increase in cycle time increased removal efficiencies insignificantly, in both scenarios of relaxation and backwashing.


2018 ◽  
Vol 35 (5) ◽  
pp. 36-44 ◽  
Author(s):  
Mohammad Salehi ◽  
Alireza Ejlali ◽  
Muhammad Shafique

Author(s):  
Liqun Shang ◽  
Hangchen Guo ◽  
Weiwei Zhu

Abstract PV power production is highly dependent on environmental and weather conditions, such as solar irradiance and ambient temperature. Because of the single control condition and any change in the external environment, the first step response of the converter duty cycle of the traditional MPPT incremental conductance algorithm is not accurate, resulting in misjudgment. To improve the efficiency and economy of PV systems, an improved incremental conductance algorithm of MPPT control strategy is proposed. From the traditional incremental conductance algorithm, this algorithm is simple in structure and can discriminate the instantaneous increment of current, voltage and power when the external environment changes, and so can improve tracking efficiency. MATLAB simulations are carried out under rapidly changing solar radiation level, and the results of the improved and conventional incremental conductance algorithm are compared. The results show that the proposed algorithm can effectively identify the misjudgment and avoid its occurrence. It not only optimizes the system, but also improves the efficiency, response speed and tracking efficiency of the PV system, thus ensuring the stable operation of the power grid.


Sign in / Sign up

Export Citation Format

Share Document