scholarly journals A Novel Design of a Neural Network-Based Fractional PID Controller for Mobile Robots Using Hybridized Fruit Fly and Particle Swarm Optimization

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Ghusn Abdul Redha Ibraheem ◽  
Ahmad Taher Azar ◽  
Ibraheem Kasim Ibraheem ◽  
Amjad J. Humaidi

The design of a swarm optimization-based fractional control for engineering application is an active research topic in the optimization analysis. This work offers the analysis, design, and simulation of a new neural network- (NN) based nonlinear fractional control structure. With suitable arrangements of the hidden layer neurons using nonlinear and linear activation functions in the hidden and output layers, respectively, and with appropriate connection weights between different hidden layer neurons, a new class of nonlinear neural fractional-order proportional integral derivative (NNFOPID) controller is proposed and designed. It is obtained by approximating the fractional derivative and integral actions of the FOPID controller and applied to the motion control of nonholonomic differential drive mobile robot (DDMR). The proposed NNFOPID controller’s parameters consist of derivative, integral, and proportional gains in addition to fractional integral and fractional derivative orders. The tuning of these parameters makes the design of such a controller much more difficult than the classical PID one. To tackle this problem, a new swarm optimization algorithm, namely, MAPSO-EFFO algorithm, has been proposed by hybridization of the modified adaptive particle swarm optimization (MAPSO) and the enhanced fruit fly optimization (EFFO) to tune the parameters of the NNFOPID controller. Firstly, we developed a modified adaptive particle swarm optimization (MAPSO) algorithm by adding an initial run phase with a massive number of particles. Secondly, the conventional fruit fly optimization (FFO) algorithm has been modified by increasing the randomness in the initialization values of the algorithm to cover wider searching space and then implementing a variable searching radius during the update phase by starting with a large radius which decreases gradually during the searching phase. The tuning of the parameters of the proposed NNFOPID controller is carried out by reducing the MS error of 0.000059, whereas the MSE of the nonlinear neural system (NNPID) is equivalent to 0.00079. The NNFOPID controller also decreased control signals that drive DDMR motors by approximately 45 percent compared to NNPID and thus reduced energy consumption in circular trajectories. The numerical simulations revealed the excellent performance of the designed NNFOPID controller by comparing its performance with that of nonlinear neural (NNPID) controllers on the trajectory tracking of the DDMR with different trajectories as study cases.

2022 ◽  
pp. 1301-1312
Author(s):  
M. Outanoute ◽  
A. Lachhab ◽  
A. Selmani ◽  
H. Oubehar ◽  
A. Snoussi ◽  
...  

In this article, the authors develop the Particle Swarm Optimization algorithm (PSO) in order to optimise the BP network in order to elaborate an accurate dynamic model that can describe the behavior of the temperature and the relative humidity under an experimental greenhouse system. The PSO algorithm is applied to the Back-Propagation Neural Network (BP-NN) in the training phase to search optimal weights baded on neural networks. This approach consists of minimising the reel function which is the mean squared difference between the real measured values of the outputs of the model and the values estimated by the elaborated neural network model. In order to select the model which possess higher generalization ability, various models of different complexity are examined by the test-error procedure. The best performance is produced by the usage of one hidden layer with fourteen nodes. A comparison of measured and simulated data regarding the generalization ability of the trained BP-NN model for both temperature and relative humidity under greenhouse have been performed and showed that the elaborated model was able to identify the inside greenhouse temperature and humidity with a good accurately.


Author(s):  
Asia L. Jabar ◽  
Tarik A. Rashid

<p>In this paper, a new modified model of Feed Forward Neural Network with Particle Swarm Optimization via using Euclidean Distance method (FNNPSOED) is used to better handle a classification problem of the employee’s behavior. The Particle Swarm Optimization (PSO) as a natural inspired algorithm is used to support the Feed Forward Neural Network (FNN) with one hidden layer in obtaining the optimum weights and biases using different hidden layer neurons numbers. The key reason of using ED with PSO is to take the distance between each two-feature value then use this distance as a random number in the velocity equation for the velocity value in the PSO algorithm. The FNNPSOED is used to classify employees’ behavior using 29 unique features. The FNNPSOED is evaluated against the Feed Forward Neural Network with Particle Swarm Optimization (FNNPSO). The FNNPSOED produced satisfactory results.</p>


MATEMATIKA ◽  
2019 ◽  
Vol 35 (3) ◽  
Author(s):  
Budi Warsito ◽  
Hasbi Yasin ◽  
Alan Prahutama

This research discusses the use of a class of heuristic optimization to obtain the weights in neural network model for time series prediction. In this case, Feed Forward Neural Network (FFNN) was chosen as the class of network architecture. The heuristic algorithm determined to obtain the weights in network was Particle Swarm Optimization (PSO). It is a non-gradient optimization technique. This method was used for optimizing the connection weights of network. The lags used as the input were selected based on the strong relationship with the current. The eight architectures were conducted to improve the accuracy of the neural network model. In each architecture, we repeated the running thirty times to get the statistics of mean and variance. The comparison of the performance of various architectures based on the minimum MSE and the stability of the results is presented in this paper. The optimal number of neurons in hidden layer was determined by these criteria. The proposed procedure was applied in air pollution data, i.e. Solid Particulate Matter (SPM). The results showed that the proposed procedure gave promising results in terms of prediction accuracy. A few neurons in hidden layer are strongly recommended in choosing the optimal architecture.


Sign in / Sign up

Export Citation Format

Share Document