scholarly journals Fixed-Time Trajectory Tracking Control of Autonomous Surface Vehicle with Model Uncertainties and Disturbances

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jiawen Cui ◽  
Haibin Sun

The issue of fixed-time trajectory tracking control for the autonomous surface vehicles (ASVs) system with model uncertainties and external disturbances is investigated in this paper. Particularly, convergence time does not depend on initial conditions. The major contributions include the following: (1) An integral sliding mode controller (ISMC) via integral sliding mode surface is first proposed, which can ensure that the system states can follow the desired trajectory within a fixed time. (2) Unknown external disturbances are absolutely estimated by means of designing a fixed-time disturbance observer (FTDO). By combining the FTDO and ISMC techniques, a new control scheme (FTDO-ISMC) is developed, which can achieve both disturbance compensation and chattering-free condition. (3) Aiming at reconstructing the unknown nonlinear dynamics and external disturbances, a fixed-time unknown observer (FTUO) is proposed, thus providing the FTUO-ISMC scheme that finally achieves trajectory tracking of ASVs with unknown parameters. Finally, simulation tests and detailed comparisons indicate the effectiveness of the proposed control scheme.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Huihui Pan ◽  
Guangming Zhang

This paper studies the fixed-time trajectory tracking control problem of robot manipulators in the presence of uncertain dynamics and external disturbances. First, a novel nonsingular fixed-time sliding mode surface is presented, which can ensure that the convergence time of the suggested surface is bounded regardless of the initial states. Subsequently, a novel fast nonsingular fixed-time sliding mode control (NFNFSMC) is developed so that the closed-loop system is fixed-time convergent to the equilibrium. By applying the proposed NFNFSMC method and the adaptive technique, a novel adaptive nonsingular fixed-time control scheme is proposed, which can guarantee fast fixed-time convergence of the tracking errors to small regions around the origin. With the proposed control method, the lumped disturbance is compensated by the adaptive technique, whose prior information about the upper bound is not needed. The fixed-time stability of the trajectory tracking control under the proposed controller is proved by the Lyapunov stability theory. Finally, corresponding simulations are given to illustrate the validity and superiority of the proposed control approach.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Guangli Zhou ◽  
Yongming Yao ◽  
Huiying Liu ◽  
Xupeng Bai ◽  
Jianbo Liu

In this paper, we presented a strategy for accurate trajectory tracking control of a quadrotor with unknown disturbances. To guarantee that the tracking errors of all system state variables converge to zero in finite time and eliminate the chattering phenomenon caused by the switching control action, a control strategy that combines linear prediction model of disturbances and fuzzy sliding mode control (SMC) based on logical framework with side conditions (LFSC) was designed. LFSC was applied for both position and attitude tracking of the quadrotor. Firstly, a linear prediction method was devised to minimize the effects of external disturbances. Secondly, a new fuzzy law was implemented to eliminate the chattering phenomenon. In addition, the stabilities of position and attitude were demonstrated by using Lyapunov theory, respectively. Simulation results and comprehensive comparisons demonstrated the superior performance and robustness of the proposed LFSC scheme in the case of external disturbances.


Sign in / Sign up

Export Citation Format

Share Document