chattering phenomenon
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 2)

Author(s):  
Bouiri Abdesselam ◽  
Benoudjafer Cherif ◽  
Boughazi Othmane ◽  
Abdallah Abden ◽  
Chojaa Hamid

<p><span lang="EN-US">Due to drawbacks of classical linear controller like proportional-integral (PI), many studies have been used non-linear controller specially when it comes to robustness, but this is less efficient in sliding mode controller (SM) due to the sign function, this function is known as a problem chattering phenomenon, this main disadvantage it can be compensated by Lyapunov backstepping condition, This paper presents nonlinear power control strategy of the doubly-fed-induction generator (DFIG) for wind application system (WAS) using sliding mode combining with backstepping controller (SM-BS) to control produced statoric powers to mitigate unnecessary chattering effects inherent in traditional SMC, to check the effectiveness of the controller, we compare performance of sliding mode controller and sliding mode controller combining with backstepping (SM-BS) in terms of required reference tracking, robustness under parametric variations of the generator, sensitivity to perturbations and reaction to speed variations under investigating further of the chattering phenomenon.</span></p>


2021 ◽  
Vol 19 ◽  
pp. 01-15
Author(s):  
Abdülhamit Nurettin ◽  
Nihat İnanç

The discontinuous control of the sliding mode control (SMC) law causes chattering phenomenon in system trajectories (the oscillation around the desired value), which results in various unwanted effects such as current harmonics and torque ripples. Therefore, this study aims to investigate the performance of a sliding mode speed controller for a three-phase induction motor (IM) controlled by a rotor flux orientation technique to obtain optimum performance. The study results show that the experimental control gains found in the control law have a clear effect on limiting chattering and the system response speed. According to the study results, a hybrid controller is designed based on the fuzzy logic control (FLC) approach to optimally tune these gains. The designed hybrid controller is verified by experimental approximation of simulations using Matlab/Simulink. The simulation results show that the hybrid controller reduces the chattering phenomenon and improves the system’s dynamic performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Guangli Zhou ◽  
Yongming Yao ◽  
Huiying Liu ◽  
Xupeng Bai ◽  
Jianbo Liu

In this paper, we presented a strategy for accurate trajectory tracking control of a quadrotor with unknown disturbances. To guarantee that the tracking errors of all system state variables converge to zero in finite time and eliminate the chattering phenomenon caused by the switching control action, a control strategy that combines linear prediction model of disturbances and fuzzy sliding mode control (SMC) based on logical framework with side conditions (LFSC) was designed. LFSC was applied for both position and attitude tracking of the quadrotor. Firstly, a linear prediction method was devised to minimize the effects of external disturbances. Secondly, a new fuzzy law was implemented to eliminate the chattering phenomenon. In addition, the stabilities of position and attitude were demonstrated by using Lyapunov theory, respectively. Simulation results and comprehensive comparisons demonstrated the superior performance and robustness of the proposed LFSC scheme in the case of external disturbances.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6509
Author(s):  
Van Van Huynh ◽  
Phong Thanh Tran ◽  
Bui Le Ngoc Minh ◽  
Anh Tuan Tran ◽  
Dao Huy Tuan ◽  
...  

The implementation of the sliding mode control (SMC) for load frequency control of power networks becomes difficult due to the chattering phenomenon of high-frequency switching. This chattering problem in SMC is extremely dangerous for actuators used in power systems. In this paper, a continuous control strategy by combining a second-order mode and integral siding surface is proposed as a possible solution to this problem. The proposed second-order integral sliding mode control (SOISMC) law not only rejects chattering phenomenon in control input, but also guarantees the robustness of the multi-area power network, which has an effect on parametric uncertainties such as the load variations and the matched or mismatched parameter uncertainties. Moreover, the reporting of the simulation indicates that the proposed controller upholds the quality requirement by controlling with operating conditions in the larger range, rejects disturbance, reduces the transient response of frequency, eliminates the overshoot problem, and can better address load uncertainties compared to several previous control methods. The simulation results also show that the proposed SOISMC can be used for practical multi-area power network to lessen high parameter uncertainties and load disturbances.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 188
Author(s):  
Hao Huang ◽  
Qunzhang Tu ◽  
Ming Pan ◽  
Chenming Jiang ◽  
Jinhong Xue

A fast terminal sliding mode control is proposed in this paper for improving the dynamic performance and robustness of a permanent magnet in-wheel motor system driven by a voltage source inverter. Firstly, a fast terminal sliding mode approaching law was designed to accelerate the approaching rate of the control system. Then, a torque load observer was designed to compensate for disturbances and uncertainties. Finally, fuzzy rules were designed to suppress the chattering phenomenon. Simulation and experimental results demonstrated that the fast terminal sliding mode control strategy presented better response speed than the conventional sliding mode control strategy. It had better dynamic performance and anti-interference and effectively reduced the chattering phenomenon in the control process.


Author(s):  
Ali Mousmi ◽  
Ahmed Abbou ◽  
Yassine El Houm ◽  
Anass Bakouri

This paper presents and implements a Super-Twisting high order sliding mode control for a BLDC motor. Conventional sliding mode controller has a very fast response, it allows the convergence in finite time and characterized by its robustness against disturbances and uncertainties; However, the chattering phenomenon due to the discontinuous nature of its control organ degrades its performance, especially in case of mechanical membranes control. To overcome this disadvantage, the most commun solutions are based on the adaptation of its discontinuous nature at static regime, it reduces effectively the chattering phenomenon, but on the other hand impacts performance in terms of robustness. The Super-Twisting is an algorithm of high order sliding mode applicable on systems with relative degree 1, it produces a continuous control which cancels the chattering phenomenon and preserve all traditional sliding mode command performances. To validate the effectiveness and the robustness of the Super-Twisting controller for controlling brushless motors, experimental results using a 3KW BLDC motor are provided and compared with those of a conventional sliding mode controller.


Robotica ◽  
2019 ◽  
Vol 37 (10) ◽  
pp. 1785-1803 ◽  
Author(s):  
Ehsan Taheri ◽  
Mohamad Hossein Ferdowsi ◽  
Mohammad Danesh

SummaryDesigning the boundary layer thickness and switching gain in the nonlinear part of sliding mode controller (SMC) is one of the main subjects in SMC design that needs human experience, knowledge on the amplitude of disturbances, and information about the bounds of system uncertainties. In this paper, to reduce the trial-and-error effort by the designer(s) two different fitness functions in the horizontal and vertical planes are presented and a heuristic method is used for their optimization. The optimal switching gain in the proposed approach properly compensates the unmodeled dynamics, model uncertainty, and external disturbances. Chattering phenomenon in control signals and noise measurement effect are reduced by the optimal selection of boundary layer thickness. This proposed method is applied to an autonomous underwater vehicle (AUV) and evaluated through the real-time and cost-effective manner. The execution code is implemented on a single-board computer (SBC) through the xPC Target and is evaluated by the processor-in-the-loop (PIL) test. The results of the PIL test in the two different test cases indicate that the chattering phenomenon and amplitude of control signal applied to the actuators are reduced in comparison with the three conventional approaches in the AUV motion control.


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401878679
Author(s):  
Yanbing Liang ◽  
Heng Shi ◽  
Guangyuan Tian

A reduced-order approach to the adaptive fuzzy sliding mode control of the constrained manipulator is proposed. Based on the Udwadia–Kalaba motion constraint equation, the dynamic equation of the constrained manipulator with both ideal and non-ideal constraints is obtained. Considering the uncertainty of the terminal non-ideal constrained force and the chattering phenomenon of sliding mode control, the adaptive fuzzy and the sliding mode control method are combined to control the constrained manipulator. Because the system is constrained, the model order reduction method is innovatively used in the control algorithm. The stability of the system is proved by Lyapunov theorem. For demonstrating the effectiveness of the control algorithm, the 2-degree-of-freedom manipulator is taken as the research object. Finally, the high-precision control of the manipulator is achieved and the chattering phenomenon caused by the sliding mode control is weakened.


Author(s):  
Zhongda Tian ◽  
◽  
Xianwen Gao ◽  
Peiqin Guo ◽  

A teleoperation robot system is connected through a network. However, stochastic delay in such a network can affect its performance, or even make the system unstable. To solve this problem, this paper proposes a teleoperation robot system control method based on fuzzy sliding mode. In the proposed method, a delay generator generates variable delay conforming to a shift gamma distribution designed to simulate actual network delay. In addition, a proposed fuzzy sliding mode controller based on switching gain adjustment is used to rectify the chattering phenomenon in the sliding mode controller of the teleoperation robot system. In the controller, the master hand uses impedance control and realizes feedback from the slave hand. Controller simulation comparison results show that the proposed fuzzy sliding mode controller effectively eliminates the sliding mode control chattering phenomenon as the slave hand stabilizes the tracking velocity of the master hand. Consequently, the system exhibits improved dynamic performance.


Sign in / Sign up

Export Citation Format

Share Document