scholarly journals Investigation to Improve the Pool Boiling Heat Transfer Characteristics Using Laser-Textured Copper-Grooved Surfaces

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Dharmendra Mani ◽  
Suresh Sivan ◽  
Hafiz Muhammad Ali ◽  
Udaya Kumar Ganesan

Improving the performance of pool boiling with critical heat flux of pool boiling and enhancing the coefficient of heat transfer through surface modification technique have gained a lot of attention. These surface modifications can be done at different scales using various techniques. However, along with the performance improvement, the durability and stability of the surface modification are very crucial. Laser machining is an attractive option in this aspect and is gaining a lot of attention. In the present experimentation research work, pool boiling attributed performance of copper-grooved surfaces obtained through picosecond laser machining method is investigated. The performance of the modified surfaces was compared with the plain surface serving as reference. In this, three square grooved patterns with the same pitch (100 μm) and width (100 μm) but different depths (30, 70, and 100 μm) were investigated. Different depths were obtained by varying the scanning speed of the laser machine. In addition to the microchannel effect, the grain structuring during the laser machining process creates additional nucleation sites which has proven its effectiveness in improving the pool boiling performance. In all aspects, the pool boiling performance of the grooved laser-textured surface has showed increased surface characterisation as compared with the surface of copper.

Author(s):  
Pruthvik Raghupathi ◽  
Alyssa Owens ◽  
Mark Steinke ◽  
Ting Yu Lin ◽  
Ankit Kalani ◽  
...  

Abstract Professor Satish G. Kandlikar has been an outstanding researcher in the field of heat transfer having published some of the most widely cited publications over the last 30 years. Through the years he has co-authored 212 journal paper in various areas of heat transfer. The present paper provides a compressive look at Professor Kandlikar’s research work over the years. The research work has been broadly categorized into 1) flow boiling correlations, 2) fluid flow and heat transfer in microchannels, 3) roughness effect at microscale, 4) pool boiling heat transfer and CHF modeling, 5) surface enhancements for pool boiling, 6) numerical modeling of bubble growth in boiling, 7) modeling liquid-vapor and liquid-liquid interfaces, 8) water transport in PEM fuel cells and 9) infrared imaging to detect breast cancer. The research conducted in each of these areas has produced some landmark findings, some of the most widely used theoretical models and an abundance of high quality experimental data. The focus of this paper is to collate major finding and highlights some of the common themes that guided the research in Professor Kandlikar’s group. This will help the readers gain a comprehensive understanding of each of the areas of study in Professor Kandlikar’s group and place the findings of the paper in a larger context.


2019 ◽  
Vol 23 (5 Part B) ◽  
pp. 3209-3237 ◽  
Author(s):  
Asif Khan ◽  
Hafiz Ali

Nanofluids are suspensions of nanoparticles with small concentration spread in base fluids such as water, oil and ethylene glycol. Nanofluid boiling is an important research area which provides many chances to explore new frontiers but also poses great challenges. Over the last decade, various studies have been carried out on pool boiling of nanofluids for the enhancement of critical heat flux which is otherwise limited by the use of base fluids. Several efforts have been made in the literature on nanofluid boiling, however, data on the boiling heat transfer coefficient and the critical heat flux have been unpredictable. Current study is a review of the status of research work on effects of nanofluids on heat transfer coefficient and critical heat flux. An emphasis is put in a review form on the recent progresses in nanofluid heat transfer coefficient and critical heat flux of pool boiling. This study also focuses on advancements in nanofluids, their properties and various parameters affecting boiling critical heat flux and heat transfer coefficient. At the end correlations used by different researchers to find out the critical heat flux and heat transfer coefficient are listed.


Sign in / Sign up

Export Citation Format

Share Document