scholarly journals Alkaloids from Cryptolepis sanguinolenta as Potential Inhibitors of SARS-CoV-2 Viral Proteins: An In Silico Study

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Lawrence Sheringham Borquaye ◽  
Edward Ntim Gasu ◽  
Gilbert Boadu Ampomah ◽  
Lois Kwane Kyei ◽  
Margaret Amerley Amarh ◽  
...  

The ongoing global pandemic caused by the human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions of people and claimed hundreds of thousands of lives. The absence of approved therapeutics to combat this disease threatens the health of all persons on earth and could cause catastrophic damage to society. New drugs are therefore urgently required to bring relief to people everywhere. In addition to repurposing existing drugs, natural products provide an interesting alternative due to their widespread use in all cultures of the world. In this study, alkaloids from Cryptolepis sanguinolenta have been investigated for their ability to inhibit two of the main proteins in SARS-CoV-2, the main protease and the RNA-dependent RNA polymerase, using in silico methods. Molecular docking was used to assess binding potential of the alkaloids to the viral proteins whereas molecular dynamics was used to evaluate stability of the binding event. The results of the study indicate that all 13 alkaloids bind strongly to the main protease and RNA-dependent RNA polymerase with binding energies ranging from -6.7 to -10.6 kcal/mol. In particular, cryptomisrine, cryptospirolepine, cryptoquindoline, and biscryptolepine exhibited very strong inhibitory potential towards both proteins. Results from the molecular dynamics study revealed that a stable protein-ligand complex is formed upon binding. Alkaloids from Cryptolepis sanguinolenta therefore represent a promising class of compounds that could serve as lead compounds in the search for a cure for the corona virus disease.

2020 ◽  
Author(s):  
Tien Huynh ◽  
Haoran Wang ◽  
Wendy Cornell ◽  
Binquan Luan

<div>Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic with very limited specific treatments. To fight COVID-19, various traditional antiviral medicines haveb been prescribed in China to infected patients with mild to moderate symptoms and received unexpected success in controlling the disease. However, the molecular mechanisms of how these herbal medicines interact with the virus have remained elusive. It is well known that the main protease (Mpro) of SARS-CoV-2 plays an important role in maturation of many viral proteins such as the RNA-dependent RNA polymerase. Here,we explore the underlying molecular mechanisms of the computationally determined top candidate–rutin, a key component in many traditional antiviral medicines such as Lianhuaqinwen and Shuanghuanlian, for inhibiting the viral target–Mpro. Using in silico methods (docking and molecular dynamics simulations), we revealed the dynamics and energetics of rutin when interacting with the Mpro of SARS-CoV-2, suggesting that the highly hydrophilic rutin molecule can be bound inside the Mpro’ pocket (active site) and possibly inhibit its biological functions. In addition, we optimized the structure of rutin and designed a more hydrophobic analog which satisfies the rule of five for western medicines and demonstrated that it possesses a much stronger binding affinity to the SARS-COV-2’s Mpro.<br></div>


2021 ◽  
Vol 12 ◽  
Author(s):  
Faez Iqbal Khan ◽  
Tongzhou Kang ◽  
Haider Ali ◽  
Dakun Lai

Development of new drugs is a time-taking and expensive process. Comprehensive efforts are being made globally toward the search of therapeutics against SARS-CoV-2. Several drugs such as remdesivir, favipiravir, ritonavir, and lopinavir have been included in the treatment regimen and shown effective results in several cases. Among the existing broad-spectrum antiviral drugs, remdesivir is found to be more effective against SARS-CoV-2. Remdesivir has broad-spectrum antiviral action against many single-stranded RNA viruses including pathogenic SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). In this study, we proposed that remdesivir strongly binds to membrane protein (Mprotein), RNA-dependent RNA polymerase (RDRP), and main protease (Mprotease) of SARS-CoV-2. It might show antiviral activity by inhibiting more than one target. It has been found that remdesivir binds to Mprotease, Mprotein, and RDRP with −7.8, −7.4, and −7.1 kcal/mol, respectively. The structure dynamics study suggested that binding of remdesivir leads to unfolding of RDRP. It has been found that strong binding of remdesivir to Mprotein leads to decrease in structural deviations and gyrations. Additionally, the average solvent-accessible surface area of Mprotein decreases from 127.17 to 112.12 nm2, respectively. Furthermore, the eigenvalues and the trace of the covariance matrix were found to be low in case of Mprotease–remdesivir, Mprotein–remdesivir, and RDRP–remdesivir. Binding of remdesivir to Mprotease, Mprotein, and RDRP reduces the average motions in protein due to its strong binding. The MMPBSA calculations also suggested that remdesivir has strong binding affinity with Mprotein, Mprotease, and RDRP. The detailed analysis suggested that remdesivir has more than one target of SARS-CoV-2.


Author(s):  
Brahmaiah Pendyala ◽  
Ankit Patras

<p>As novel corona virus (COVID-19) infections has spread throughout the world, world health organization (WHO) has announced COVID-19 as a pandemic infection. Henceforth investigators are conducting extensive research to find possible therapeutic agents against COVID-19. Main protease (Mpro) that plays an essential role in processing the polyproteins that are translated from the 2019-nCOV RNA and RNA-dependent RNA polymerase (RdRp) that catalyzes the replication of RNA from RNA template becomes as a potential targets for in silico screening of effective therapeutic compounds to COVID-19. In this study we used COVID-19 Docking Server to predict potential food bioactive compounds to inhibit Mpro and RdRp. The results showed that Phycocyanobilin, Riboflavin, Cyanidin, Daidzein, Genistein are potent inhibitor bioactive compounds to Mpro and RdRp in comparison to antiviral drugs. Though, further in vitro and/or in vivo research is required to validate the docking results. <br></p>


2020 ◽  
Author(s):  
Hoang Linh Nguyen ◽  
Thai Nguyen ◽  
Duc Toan Truong ◽  
Mai Suan Li

The outbreak of a new coronavirus SARS-CoV-2 (severe acute respiratory syndrome–<br>coronavirus 2) has caused a global CoVid-19 (coronavirus disease 2019) pandemic, resulting in millions of infections and thousands of deaths around the world. There is currently no drug or vaccine for CoVid-19, but it has been revealed that some commercially available drugs are promising, at least for treating symptoms. Among them, Remdesivir, which can block the activity of RNA-dependent RNA polymerase (RdRp) in old SARS-CoV and MERS-CoV viruses, has been prescribed to CoVid-19 patients in many countries. A recent experiment showed that Remdesivir binds to SARS-CoV-2 with an inhibition constant of μM, but the exact target has not been reported. In this work, combining molecular docking, steered molecular dynamics and umbrella sampling we examined its binding affinity to two targets including the main protease (Mpro), also known as 3C-like protease, and RdRp. We showed that Remdesivir binds to Mpro slightly weaker than to RdRp and the corresponding inhibition constants, consistent with the experiment, fall to the μM range. The binding mechanisms of<br>Remdesivir to two targets differ in that electrostatic interaction is the main force in stabilizing the RdRp-Remdesivir complex, while the van der Waals interaction dominates in the MproRemdesivir case. Our result indicates that Remdesivir can target not only RdRp but also Mpro, which can be invoked to explain why this drug is effective in treating Covid-19. We have identified residues of the target protein that make the most important contribution to binding affinity, and this information is useful for drug development for this disease. <br>


2021 ◽  
Author(s):  
Eldar Muhtar ◽  
Mengyang Wang ◽  
Haimei Zhu

Aim: SARS-CoV-2 caused more than 3.8 million deaths according to the WHO. In this urgent circumstance, we aimed at screening out potential inhibitors targeting the main protease of SARS-CoV-2. Materials & methods: An in-house carboline and quinoline database including carboline, quinoline and their derivatives was established. A virtual screening in carboline and quinoline database, 50 ns molecular dynamics simulations and molecular mechanics Poisson−Boltzmann surface area calculations were carried out. Results: The top 12 molecules were screened out preliminarily. The molecular mechanics Poisson−Boltzmann surface area ranking showed that p59_7m, p12_7e, p59_7k stood out with the lowest binding energies of -24.20, -17.98, -17.67 kcal/mol, respectively. Conclusion: The study provides powerful in silico results that indicate the selected molecules are valuable for further evaluation as SARS-CoV-2 main protease inhibitors.


2020 ◽  
Author(s):  
Hoang Linh Nguyen ◽  
Thai Nguyen ◽  
Duc Toan Truong ◽  
Mai Suan Li

The outbreak of a new coronavirus SARS-CoV-2 (severe acute respiratory syndrome–<br>coronavirus 2) has caused a global CoVid-19 (coronavirus disease 2019) pandemic, resulting in millions of infections and thousands of deaths around the world. There is currently no drug or vaccine for CoVid-19, but it has been revealed that some commercially available drugs are promising, at least for treating symptoms. Among them, Remdesivir, which can block the activity of RNA-dependent RNA polymerase (RdRp) in old SARS-CoV and MERS-CoV viruses, has been prescribed to CoVid-19 patients in many countries. A recent experiment showed that Remdesivir binds to SARS-CoV-2 with an inhibition constant of μM, but the exact target has not been reported. In this work, combining molecular docking, steered molecular dynamics and umbrella sampling we examined its binding affinity to two targets including the main protease (Mpro), also known as 3C-like protease, and RdRp. We showed that Remdesivir binds to Mpro slightly weaker than to RdRp and the corresponding inhibition constants, consistent with the experiment, fall to the μM range. The binding mechanisms of<br>Remdesivir to two targets differ in that electrostatic interaction is the main force in stabilizing the RdRp-Remdesivir complex, while the van der Waals interaction dominates in the MproRemdesivir case. Our result indicates that Remdesivir can target not only RdRp but also Mpro, which can be invoked to explain why this drug is effective in treating Covid-19. We have identified residues of the target protein that make the most important contribution to binding affinity, and this information is useful for drug development for this disease. <br>


Author(s):  
Brahmaiah Pendyala ◽  
Ankit Patras

<p>As novel corona virus (COVID-19) infections has spread throughout the world, world health organization (WHO) has announced COVID-19 as a pandemic infection. Henceforth investigators are conducting extensive research to find possible therapeutic agents against COVID-19. Main protease (Mpro) that plays an essential role in processing the polyproteins that are translated from the 2019-nCOV RNA and RNA-dependent RNA polymerase (RdRp) that catalyzes the replication of RNA from RNA template becomes as a potential targets for in silico screening of effective therapeutic compounds to COVID-19. In this study we used COVID-19 Docking Server to predict potential food bioactive compounds to inhibit Mpro and RdRp. The results showed that Phycocyanobilin, Riboflavin, Cyanidin, Daidzein, Genistein are potent inhibitor bioactive compounds to Mpro and RdRp in comparison to antiviral drugs. Though, further in vitro and/or in vivo research is required to validate the docking results. <br></p>


Author(s):  
Brahmaiah Pendyala ◽  
Ankit Patras

<p>As novel corona virus (COVID-19) infections has spread throughout the world, world health organization (WHO) has announced COVID-19 as a pandemic infection. Henceforth investigators are conducting extensive research to find possible therapeutic agents against COVID-19. Main protease (Mpro) that plays an essential role in processing the polyproteins that are translated from the COVID-19 RNA becomes and RNA-dependent RNA polymerase (RdRp) that catalyzes the replication of RNA from RNA template as a potential targets for in silico screening of effective therapeutic compounds to COVID-19. In this study we used COVID-19 Docking Server to predict potential food bioactive compounds to inhibit Mpro and RdRp. The results showed that Phycocyanobilin, Riboflavin, Cyanidin, Daidzein, Genistein are potent inhibitor bioactive compounds to Mpro and RdRp in comparison to antiviral drugs. Though, further in vitro and/or in vivo research is required to validate the docking results. <br></p>


Author(s):  
Tien Huynh ◽  
Haoran Wang ◽  
Wendy Cornell ◽  
Binquan Luan

<div>Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic with very limited specific treatments. To fight COVID-19, various traditional antiviral medicines haveb been prescribed in China to infected patients with mild to moderate symptoms and received unexpected success in controlling the disease. However, the molecular mechanisms of how these herbal medicines interact with the virus have remained elusive. It is well known that the main protease (Mpro) of SARS-CoV-2 plays an important role in maturation of many viral proteins such as the RNA-dependent RNA polymerase. Here,we explore the underlying molecular mechanisms of the computationally determined top candidate–rutin, a key component in many traditional antiviral medicines such as Lianhuaqinwen and Shuanghuanlian, for inhibiting the viral target–Mpro. Using in silico methods (docking and molecular dynamics simulations), we revealed the dynamics and energetics of rutin when interacting with the Mpro of SARS-CoV-2, suggesting that the highly hydrophilic rutin molecule can be bound inside the Mpro’ pocket (active site) and possibly inhibit its biological functions. In addition, we optimized the structure of rutin and designed a more hydrophobic analog which satisfies the rule of five for western medicines and demonstrated that it possesses a much stronger binding affinity to the SARS-COV-2’s Mpro.<br></div>


Sign in / Sign up

Export Citation Format

Share Document