Study on the Existence of Positive Solution of Sub-Linear Fractional Differential Equation

2011 ◽  
Vol 403-408 ◽  
pp. 432-436
Author(s):  
Shou Fu Ma ◽  
Zhen Fang Wei

In recent years, the study on nonlinear fractional differential equation has been more concerned as it is widely used in physics, mechanics, geology, automation and many other disciplines and fields. This paper focuses on the sub-linear fractional differential equations, whose nonlinear is constrained by the power function. While in this case, it is possible to have positive solution by using the cone compression fixed point theorem. This study represents analysis on problems related to the fractional differential equations from the above aspects. With further development of this field in theoretical research and application, more explorations are waiting for us to do to lay a good theoretical foundation for its future development, and build up a broader prospect.

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jingjing Tan ◽  
Meixia Li ◽  
Aixia Pan

We prove that there are unique positive solutions for a new kind of fractional differential equation with a negatively perturbed term boundary value problem. Our methods rely on an iterative algorithm which requires constructing an iterative scheme to approximate the solution. This allows us to calculate the estimation of the convergence rate and the approximation error.


Author(s):  
Nguyen Cong ◽  
Doan Son ◽  
Hoang Tuan

AbstractOur aim in this paper is to investigate the asymptotic behavior of solutions of linear fractional differential equations. First, we show that the classical Lyapunov exponent of an arbitrary nontrivial solution of a bounded linear fractional differential equation is always nonnegative. Next, using the Mittag-Leffler function, we introduce an adequate notion of fractional Lyapunov exponent for an arbitrary function. We show that for a linear fractional differential equation, the fractional Lyapunov spectrum which consists of all possible fractional Lyapunov exponents of its solutions provides a good description of asymptotic behavior of this equation. Consequently, the stability of a linear fractional differential equation can be characterized by its fractional Lyapunov spectrum. Finally, to illustrate the theoretical results we compute explicitly the fractional Lyapunov exponent of an arbitrary solution of a planar time-invariant linear fractional differential equation.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Dumitru Baleanu ◽  
Octavian G. Mustafa ◽  
Ravi P. Agarwal

We establish here that under some simple restrictions on the functional coefficienta(t)the fractional differential equationD0tα[tx′−x+x(0)]+a(t)x=0,  t>0, has a solution expressible asct+d+o(1)fort→+∞, whereD0tαdesignates the Riemann-Liouville derivative of orderα∈(0,1)andc,d∈ℝ.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Rabha W. Ibrahim

We prove the Ulam-Hyers stability of Cauchy fractional differential equations in the unit disk for the linear and non-linear cases. The fractional operators are taken in sense of Srivastava-Owa operators.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jun-Rui Yue ◽  
Jian-Ping Sun ◽  
Shuqin Zhang

We consider the following boundary value problem of nonlinear fractional differential equation:(CD0+αu)(t)=f(t,u(t)),  t∈[0,1],  u(0)=0,   u′(0)+u′′(0)=0,  u′(1)+u′′(1)=0, whereα∈(2,3]is a real number, CD0+αdenotes the standard Caputo fractional derivative, andf:[0,1]×[0,+∞)→[0,+∞)is continuous. By using the well-known Guo-Krasnoselskii fixed point theorem, we obtain the existence of at least one positive solution for the above problem.


Fractals ◽  
2016 ◽  
Vol 24 (02) ◽  
pp. 1650021 ◽  
Author(s):  
KIRAN M. KOLWANKAR

The concept of local fractional derivative was introduced in order to be able to study the local scaling behavior of functions. However it has turned out to be much more useful. It was found that simple equations involving these operators naturally incorporate the fractal sets into the equations. Here, the scope of these equations has been extended further by considering different possibilities for the known function. We have also studied a separable local fractional differential equation along with its method of solution.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Rabha W. Ibrahim

We provide a complex transform that maps the complex fractional differential equation into a system of fractional differential equations. The homogeneous and nonhomogeneous cases for equivalence equations are discussed and also nonequivalence equations are studied. Moreover, the existence and uniqueness of solutions are established and applications are illustrated.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Changyou Wang ◽  
Haiqiang Zhang ◽  
Shu Wang

This paper is concerned with a nonlinear fractional differential equation involving Caputo derivative. By constructing the upper and lower control functions of the nonlinear term without any monotone requirement and applying the method of upper and lower solutions and the Schauder fixed point theorem, the existence and uniqueness of positive solution for the initial value problem are investigated. Moreover, the existence of maximal and minimal solutions is also obtained.


2020 ◽  
Vol 24 (4) ◽  
pp. 2535-2542
Author(s):  
Yong-Ju Yang

This paper proposes a new method to solve local fractional differential equation. The method divides the studied equation into a system, where the initial solution is obtained from a residual equation. The new method is therefore named as the fractional residual method. Examples are given to elucidate its efficiency and reliability.


Sign in / Sign up

Export Citation Format

Share Document