scholarly journals An Adaptive Method Based on Multiscale Dilated Convolutional Network for Binaural Speech Source Localization

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Lulu Wu ◽  
Hong Liu ◽  
Bing Yang ◽  
Runwei Ding

Most binaural speech source localization models perform poorly in unprecedentedly noisy and reverberant situations. Here, this issue is approached by modelling a multiscale dilated convolutional neural network (CNN). The time-related crosscorrelation function (CCF) and energy-related interaural level differences (ILD) are preprocessed in separate branches of dilated convolutional network. The multiscale dilated CNN can encode discriminative representations for CCF and ILD, respectively. After encoding, the individual interaural representations are fused to map source direction. Furthermore, in order to improve the parameter adaptation, a novel semiadaptive entropy is proposed to train the network under directional constraints. Experimental results show the proposed method can adaptively locate speech sources in simulated noisy and reverberant environments.

Author(s):  
Attila Zoltán Jenei ◽  
Gábor Kiss

In the present study, we attempt to estimate the severity of depression using a Convolutional Neural Network (CNN). The method is special because an auto- and cross-correlation structure has been crafted rather than using an actual image for the input of the network. The importance to investigate the possibility of this research is that depression has become one of the leading mental disorders in the world. With its appearance, it can significantly reduce an individual's quality of life even at an early stage, and in severe cases, it may threaten with suicide. It is therefore important that the disorder be recognized as early as possible. Furthermore, it is also important to determine the disorder severity of the individual, so that a treatment order can be established. During the examination, speech acoustic features were obtained from recordings. Among the features, MFCC coefficients and formant frequencies were used based on preliminary studies. From its subsets, correlation structure was created. We applied this quadratic structure to the input of a convolutional network. Two models were crafted: single and double input versions. Altogether, the lowest RMSE value (10.797) was achieved using the two features, which has a moderate strength correlation of 0.61 (between estimated and original).


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 169969-169978 ◽  
Author(s):  
Abdullah Kucuk ◽  
Anshuman Ganguly ◽  
Yiya Hao ◽  
Issa M. S. Panahi

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 319
Author(s):  
Yi Wang ◽  
Xiao Song ◽  
Guanghong Gong ◽  
Ni Li

Due to the rapid development of deep learning and artificial intelligence techniques, denoising via neural networks has drawn great attention due to their flexibility and excellent performances. However, for most convolutional network denoising methods, the convolution kernel is only one layer deep, and features of distinct scales are neglected. Moreover, in the convolution operation, all channels are treated equally; the relationships of channels are not considered. In this paper, we propose a multi-scale feature extraction-based normalized attention neural network (MFENANN) for image denoising. In MFENANN, we define a multi-scale feature extraction block to extract and combine features at distinct scales of the noisy image. In addition, we propose a normalized attention network (NAN) to learn the relationships between channels, which smooths the optimization landscape and speeds up the convergence process for training an attention model. Moreover, we introduce the NAN to convolutional network denoising, in which each channel gets gain; channels can play different roles in the subsequent convolution. To testify the effectiveness of the proposed MFENANN, we used both grayscale and color image sets whose noise levels ranged from 0 to 75 to do the experiments. The experimental results show that compared with some state-of-the-art denoising methods, the restored images of MFENANN have larger peak signal-to-noise ratios (PSNR) and structural similarity index measure (SSIM) values and get better overall appearance.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 264
Author(s):  
Kaisa Liimatainen ◽  
Riku Huttunen ◽  
Leena Latonen ◽  
Pekka Ruusuvuori

Identifying localization of proteins and their specific subpopulations associated with certain cellular compartments is crucial for understanding protein function and interactions with other macromolecules. Fluorescence microscopy is a powerful method to assess protein localizations, with increasing demand of automated high throughput analysis methods to supplement the technical advancements in high throughput imaging. Here, we study the applicability of deep neural network-based artificial intelligence in classification of protein localization in 13 cellular subcompartments. We use deep learning-based on convolutional neural network and fully convolutional network with similar architectures for the classification task, aiming at achieving accurate classification, but importantly, also comparison of the networks. Our results show that both types of convolutional neural networks perform well in protein localization classification tasks for major cellular organelles. Yet, in this study, the fully convolutional network outperforms the convolutional neural network in classification of images with multiple simultaneous protein localizations. We find that the fully convolutional network, using output visualizing the identified localizations, is a very useful tool for systematic protein localization assessment.


Sign in / Sign up

Export Citation Format

Share Document