scholarly journals Computing the q-Numerical Range of Differential Operators

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ahmed Muhammad ◽  
Faiza Abdullah Shareef

A linear operator on a Hilbert space may be approximated with finite matrices by choosing an orthonormal basis of thez Hilbert space. In this paper, we establish an approximation of the q-numerical range of bounded and unbounnded operator matrices by variational methods. Application to Schrödinger operator, Stokes operator, and Hain-Lüst operator is given.

2019 ◽  
Vol 40 (4) ◽  
pp. 2256-2308
Author(s):  
Sabine Bögli ◽  
Marco Marletta

Abstract We introduce concepts of essential numerical range for the linear operator pencil $\lambda \mapsto A-\lambda B$. In contrast to the operator essential numerical range, the pencil essential numerical ranges are, in general, neither convex nor even connected. The new concepts allow us to describe the set of spectral pollution when approximating the operator pencil by projection and truncation methods. Moreover, by transforming the operator eigenvalue problem $Tx=\lambda x$ into the pencil problem $BTx=\lambda Bx$ for suitable choices of $B$, we can obtain nonconvex spectral enclosures for $T$ and, in the study of truncation and projection methods, confine spectral pollution to smaller sets than with hitherto known concepts. We apply the results to various block operator matrices. In particular, Theorem 4.12 presents substantial improvements over previously known results for Dirac operators while Theorem 4.5 excludes spectral pollution for a class of nonselfadjoint Schrödinger operators which has not been possible to treat with existing methods.


Author(s):  
Don B. Hinton ◽  
Roger T. Lewis

Let l be the differential operator of order 2n defined bywhere the coefficients are real continuous functions and pn > 0. The formally self-adjoint operator l determines a minimal closed symmetric linear operator L0 in the Hilbert space L2 (0, ∞) with domain dense in L2 (0, ∞) ((4), § 17). The operator L0 has a self-adjoint extension L which is not unique, but all such L have the same continuous spectrum ((4), § 19·4). We are concerned here with conditions on the pi which will imply that the spectrum of such an L is bounded below and discrete.


1980 ◽  
Vol 88 (3) ◽  
pp. 451-468 ◽  
Author(s):  
L. E. Fraenkel

This paper concerns the boundary-value problemsin which λ is a real parameter, u is to be a real-valued function in C2[0, 1], and problem (I) is that with the minus sign. (The differential operators are called semi-linear because the non-linearity is only in undifferentiated terms.) If we linearize the equations (for ‘ small’ solutions u) by neglecting , there result the eigenvalues λ = n2π2 (with n = 1,2,…) and corresponding normalized eigenfunctionsand it is well known ((2), p. 186) that the sequence {en} is complete in that it is an orthonormal basis for the real Hilbert space L2(0, 1). We shall be concerned with possible extensions of this result to the non-linear problems (I) and (II), for which non-trivial solutions (λ, u) bifurcate from the trivial solution (λ, 0) at the points {n2π2,0) in the product space × L2(0, 1). (Here denotes the real line.)


1974 ◽  
Vol 17 (2) ◽  
pp. 295-296 ◽  
Author(s):  
Fredric M. Pollack

The numerical range W(T) of a bounded linear operator T on a Hilbert space H is defined byW(T) is always a convex subset of the plane [1] and clearly W(T) is bounded since it is contained in the ball of radius ‖T‖ about the origin. Which non-empty convex bounded subsets of the plane are the numerical range of an operator? The theorem we prove below shows that every non-empty convex bounded subset of the plane is W(T) for some T.


1989 ◽  
Vol 31 (1) ◽  
pp. 71-72
Author(s):  
J. E. Jamison ◽  
Pei-Kee Lin

Let X be a complex Banach space. For any bounded linear operator T on X, the (spatial) numerical range of T is denned as the setIf V(T) ⊆ R, then T is called hermitian. Vidav and Palmer (see Theorem 6 of [3, p. 78] proved that if the set {H + iK:H and K are hermitian} contains all operators, then X is a Hilbert space. It is natural to ask the following question.


2019 ◽  
Vol 13 (05) ◽  
pp. 2050100
Author(s):  
A. Khellaf ◽  
H. Guebbai ◽  
S. Lemita ◽  
Z. Aissaoui

In this paper, we propose a new definition of the pseudo-spectrum for operator pencils, which is associated with two bounded operators [Formula: see text] and [Formula: see text] defined in a Hilbert space. Unlike other definitions available in the literature, we prove, under specific conditions on [Formula: see text] and [Formula: see text], that the pseudo-spectrum for operator pencils is equal to an [Formula: see text]-neighborhood of the generalized spectrum. Moreover, we demonstrate how to use this concept to redefine the pseudo-spectrum of an unbounded operator. We illustrate its usefulness through a numerical example dealing with the Schrödinger operator.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Alexei Poltoratski ◽  
Rishika Rupam

AbstractMeromorphic Inner Functions (MIFs) on the upper half plane play an important role in applications to spectral problems for differential operators. In this paper, we survey some recent results concerning function theoretic properties of MIFs and show their connections with spectral problems for the Schrödinger operator.


1975 ◽  
Vol 17 (5) ◽  
pp. 689-692 ◽  
Author(s):  
C.-S. Lin

The purpose of this note is to investigate boundary points of the numerical range of an operator in terms of inner and outer center points. Some applications on commutators are given.Throughout this note, an operator will always mean a bounded linear operator on a Hilbert space X.


Entropy ◽  
2020 ◽  
Vol 22 (7) ◽  
pp. 722
Author(s):  
Stefan Klus ◽  
Feliks Nüske ◽  
Boumediene Hamzi

Many dimensionality and model reduction techniques rely on estimating dominant eigenfunctions of associated dynamical operators from data. Important examples include the Koopman operator and its generator, but also the Schrödinger operator. We propose a kernel-based method for the approximation of differential operators in reproducing kernel Hilbert spaces and show how eigenfunctions can be estimated by solving auxiliary matrix eigenvalue problems. The resulting algorithms are applied to molecular dynamics and quantum chemistry examples. Furthermore, we exploit that, under certain conditions, the Schrödinger operator can be transformed into a Kolmogorov backward operator corresponding to a drift-diffusion process and vice versa. This allows us to apply methods developed for the analysis of high-dimensional stochastic differential equations to quantum mechanical systems.


1977 ◽  
Vol 29 (5) ◽  
pp. 1010-1030 ◽  
Author(s):  
Takayuki Furuta

In this paper we shall discuss some classes of bounded linear operators on a complex Hilbert space. If T is a bounded linear operator T acting on the complex Hilbert space H, then the following two inequalities always hold:where σ(T) indicates the spectrum of T, W(T) denotes the numerical range of T defined by W(T) = {(Tx, x) : ||x|| = 1 and x ∊ H} and means the closure of W(T) respectively.


Sign in / Sign up

Export Citation Format

Share Document