scholarly journals Online Static Voltage Stability Monitoring for Power Systems Using PMU Data

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Jianhong Pan ◽  
Aidi Dong ◽  
Jiashu Fan ◽  
Yang Li

A new online static voltage stability monitoring method for power systems is proposed by using phasor measurement unit (PMU) data in this paper. This approach uses the real-time power, voltage, and phase angle data collected by the PMU to estimate the power flow Jacobian matrix of the system, and then the static voltage stability is monitored via the minimum singular values (MSVs) of the power flow Jacobian matrix. The novelty of the approach lies in the fact that it only utilizes PMU data for implementing online monitoring of the power system static voltage stability, independent of the physical model and its parameters. The application results on the IEEE 57-bus test system verify the effectiveness of the proposed approach.

2016 ◽  
Vol 19 (3) ◽  
pp. 5-12
Author(s):  
Binh Thi Thanh Phan ◽  
Thao Thi Thu Huynh ◽  
Au Ngoc Nguyen

The static voltage stability analysis is carried out by V-Q sensitivity or Q-V modal analysis. These analyses are based on the Jacobian matrix of power flow calculation. This is regarded as load bus stability analysis. With DFIG of PQ mode, the wind generation bus is considered as the PQ bus. Due to the limits of converters, these PQ buses became very special and this influences on the voltage stability examining. This paper also examines the penetration level and the location of wind generation injection based on voltage stability. The reliability of the algorithm is illustrated in a study of 14 buses power network.


2020 ◽  
Vol 10 (12) ◽  
pp. 4200
Author(s):  
Milad Aslanian ◽  
Mohammad Esmaeil Hamedani-Golshan ◽  
Hassan Haes Alhelou ◽  
Pierluigi Siano

In recent years, the importance of online monitoring short-term voltage stability has been considerably increased. Unstable cases due to response of fast dynamic loads such as induction motors to the serious disturbances can be avoided by online monitoring of voltage transients and activating fast and appropriate controls to encounter deep and prolonged voltage drop. In this paper, a set of indices based on the phasor measurement unit (PMU) measurements are introduced and compared for short-term voltage stability. To increase efficiency of the indices, a special algorithm for each index is proposed by using the investigation of the results of applying them to six disturbances’ scenarios simulated on the IEEE 39 bus system. The disturbance scenarios are representative of different cases of stable, unstable, and deep and prolonged voltage drop associated with short-term voltage transients. The performance of these indices are studied in terms of the time and accuracy required for determining the short-term voltage stability/instability cases. It is shown that the proposed method has better performance in comparison with other techniques that can be applied to power systems in reality.


2015 ◽  
Vol 781 ◽  
pp. 288-291 ◽  
Author(s):  
Natakorn Thasnas ◽  
Apirat Siritaratiwat

This paper presents the study of static voltage stability margin enhancement using shunt capacitor, SVC and STATCOM. AC and DC representations of shunt compensation devices are used in the continuation power flow process in static voltage stability study. Various performance measures including PV curves, voltage profiles, and power losses are compared. Placement and sizing techniques of shunt compensation devices are proposed for loading margin enhancement. The study has been carried out on the IEEE 14 bus test system.


2014 ◽  
Vol 511-512 ◽  
pp. 1128-1132
Author(s):  
Bing Liu ◽  
Ying Wang ◽  
Zhen Yang ◽  
Yun Wei Li ◽  
Hua Zhi Xie ◽  
...  

When the system reaches the static voltage stability limit point, Jacobian matrix is singular. By checking if minimum singular value is zero, its very easy to determine whether or not Jacobian matrix is singular. So the minimum singular value of Jacobian matrix can reflects the degree of system voltage stability effectively. Firstly this paper introduces singular value decomposition, analyses load characteristic and excitation limits involved in this method and examples on PSD-FDS are demonstrated. At last, suggestion on voltage stability monitoring by minimum singular value is proposed.


2014 ◽  
Vol 960-961 ◽  
pp. 1124-1127
Author(s):  
Si Yu Li ◽  
Jia Dong Huang ◽  
Cui Ma

Nowadays, unbalanced loads or nonlinear loads produce a bad effect on the power quality of utility mains. Also, it is necessary for reactive power to be compensated because the most of industrial loads is inductive and make a lagging displacement power factor. Reactive power compensation utilizing STATCOM is one of the most important methods to improve power quality. In this paper, the technical feature of STATCOM is introduced and then a comparison with SVC is made. The effect of STATCOM on static voltage stability in power systems has been studied. Based on PSD-BPA software, effect of STATCOM is determined. Static voltage stability margin enhancement using STATCOM and SVC is compared in the modified IEEE 14-bus test system. Test results show very encouraging result.


2012 ◽  
Vol 157-158 ◽  
pp. 991-995
Author(s):  
Pei Jia Yu ◽  
Ting Ting Jiang ◽  
Jing Zhang

Generators are of different importance to the system in terns of voltage stability. It is extremely vital to research generators’ impacts on the voltage stability. In this paper, the theory of the normal forms of diffeomorphism is used to analyze the power flow equations. By this method, the nonlinearity of power systems can be taken into consideration. Therefore, the impact of generators can be measured with more accuracy even for the cases in which the system is characterized with strong nonlinearity. The IEEE 14-bus test system is used as a case study. The results show that it ranks the generators with more accuracy than the traditional linear method.


Author(s):  
Ni Putu Agustini ◽  
I Made Wartana ◽  
Abraham Lomi

In a power system, the reactive power imbalance is related to the stability of the static voltage because the injection of reactive power that the bus receives from the system determines the bus's capability in the system. Rapid increases in real and reactive power losses occur as the system approaches the voltage drop point or the maximum load point. It is necessary to support local and adequate reactive power to avoid system leading to be voltage collapse. This study analyzes the improvement of the margin of static voltage stability using one type of modern control equipment of shunt flexible AC transmission system (FACTS), namely the static var compensator (SVC). The controller's representations are used in the continuation power flow (CPF) process to study static voltage stability. The proposed method's effectiveness has been investigated using a practical test system, namely the Bali 16-bus system, to increase the system loading capacity. The simulation was carried out by installing a modern controller in the best location, namely on bus 07 ASARI; an increase in system margin loading closed to 2% compared to the base case condition, namely λmax = 1,879 p.u with the voltage profile not changing significantly.


Sign in / Sign up

Export Citation Format

Share Document