scholarly journals A Relation between D-Index and Wiener Index for r-Regular Graphs

Author(s):  
Ahmed Mohammed Ali ◽  
Asmaa Salah Aziz

For any two distinct vertices u and  v in a connected graph G, let lPu,v=lP be the length of u−v path P and the D–distance between u and v of G is defined as: dDu,v=minplP+∑∀y∈VPdeg y, where the minimum is taken over all u−v paths P and the sum is taken over all vertices of u−v path P. The D-index of G is defined as WDG=1/2∑∀v,u∈VGdDu,v. In this paper, we found a general formula that links the Wiener index with D-index of a regular graph G. Moreover, we obtained different formulas of many special irregular graphs.

2018 ◽  
Vol 34 ◽  
pp. 459-471 ◽  
Author(s):  
Shuting Liu ◽  
Jinlong Shu ◽  
Jie Xue

Let $G=(V(G),E(G))$ be a $k$-connected graph with $n$ vertices and $m$ edges. Let $D(G)$ be the distance matrix of $G$. Suppose $\lambda_1(D)\geq \cdots \geq \lambda_n(D)$ are the $D$-eigenvalues of $G$. The transmission of $v_i \in V(G)$, denoted by $Tr_G(v_i)$ is defined to be the sum of distances from $v_i$ to all other vertices of $G$, i.e., the row sum $D_{i}(G)$ of $D(G)$ indexed by vertex $v_i$ and suppose that $D_1(G)\geq \cdots \geq D_n(G)$. The $Wiener~ index$ of $G$ denoted by $W(G)$ is given by $W(G)=\frac{1}{2}\sum_{i=1}^{n}D_i(G)$. Let $Tr(G)$ be the $n\times n$ diagonal matrix with its $(i,i)$-entry equal to $TrG(v_i)$. The distance signless Laplacian matrix of $G$ is defined as $D^Q(G)=Tr(G)+D(G)$ and its spectral radius is denoted by $\rho_1(D^Q(G))$ or $\rho_1$. A connected graph $G$ is said to be $t$-transmission-regular if $Tr_G(v_i) =t$ for every vertex $v_i\in V(G)$, otherwise, non-transmission-regular. In this paper, we respectively estimate $D_1(G)-\lambda_1(G)$ and $2D_1(G)-\rho_1(G)$ for a $k$-connected non-transmission-regular graph in different ways and compare these obtained results. And we conjecture that $D_1(G)-\lambda_1(G)>\frac{1}{n+1}$. Moreover, we show that the conjecture is valid for trees.


Author(s):  
Gary Chartrand ◽  
Sergio Ruiz ◽  
Curtiss E. Wall

AbstractA near 1-factor of a graph of order 2n ≧ 4 is a subgraph isomorphic to (n − 2) K2 ∪ P3 ∪ K1. Wallis determined, for each r ≥ 3, the order of a smallest r-regular graph of even order without a 1-factor; while for each r ≧ 3, Chartrand, Goldsmith and Schuster determined the order of a smallest r-regular, (r − 2)-edge-connected graph of even order without a 1-factor. These results are extended to graphs without near 1-factors. It is known that every connected, cubic graph with less than six bridges has a near 1-factor. The order of a smallest connected, cubic graph with exactly six bridges and no near 1-factor is determined.


10.37236/5295 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Jiang Zhou ◽  
Zhongyu Wang ◽  
Changjiang Bu

Let $G$ be a connected graph of order $n$. The resistance matrix of $G$ is defined as $R_G=(r_{ij}(G))_{n\times n}$, where $r_{ij}(G)$ is the resistance distance between two vertices $i$ and $j$ in $G$. Eigenvalues of $R_G$ are called R-eigenvalues of $G$. If all row sums of $R_G$ are equal, then $G$ is called resistance-regular. For any connected graph $G$, we show that $R_G$ determines the structure of $G$ up to isomorphism. Moreover, the structure of $G$ or the number of spanning trees of $G$ is determined by partial entries of $R_G$ under certain conditions. We give some characterizations of resistance-regular graphs and graphs with few distinct R-eigenvalues. For a connected regular graph $G$ with diameter at least $2$, we show that $G$ is strongly regular if and only if there exist $c_1,c_2$ such that $r_{ij}(G)=c_1$ for any adjacent vertices $i,j\in V(G)$, and $r_{ij}(G)=c_2$ for any non-adjacent vertices $i,j\in V(G)$.


2019 ◽  
Vol 12 (07) ◽  
pp. 2050009
Author(s):  
Siwaporn Mamart ◽  
Chalermpong Worawannotai

Merging the first and third classes in a connected graph is the operation of adding edges between all vertices at distance 3 in the original graph while keeping the original edges. We determine when merging the first and third classes in a bipartite distance-regular graph produces a distance-regular graph.


10.37236/2784 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Alan Frieze ◽  
Charalampos E. Tsourakakis

An edge colored graph $G$ is rainbow edge connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connectivity of a connected graph $G$, denoted by $rc(G)$, is the smallest number of colors that are needed in order to make $G$ rainbow connected. In this work we study the rainbow connectivity of binomial random graphs at the connectivity threshold $p=\frac{\log n+\omega}{n}$ where $\omega=\omega(n)\to\infty$ and ${\omega}=o(\log{n})$ and of random $r$-regular graphs where $r \geq 3$ is a fixed integer. Specifically, we prove that the rainbow connectivity $rc(G)$ of $G=G(n,p)$ satisfies $rc(G) \sim \max\{Z_1,\text{diam}(G)\}$ with high probability (whp). Here $Z_1$ is the number of vertices in $G$ whose degree equals 1 and the diameter of $G$ is asymptotically equal to $\frac{\log n}{\log\log n}$ whp. Finally, we prove that the rainbow connectivity $rc(G)$ of the random $r$-regular graph $G=G(n,r)$ whp satisfies $rc(G) =O(\log^{2\theta_r}{n})$ where $\theta_r=\frac{\log (r-1)}{\log (r-2)}$ when $r\geq 4$ and $rc(G) =O(\log^4n)$ whp when $r=3$.


10.37236/8073 ◽  
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Klavdija Kutnar ◽  
Dragan Marušič ◽  
Štefko Miklavič ◽  
Primož Šparl

Let $\ell$ denote a non-negative integer. A connected graph $\Gamma$ of even order at least $2\ell+2$ is $\ell$-extendable if it contains a matching of size $\ell$ and if every such matching is contained in a perfect matching of $\Gamma$. A connected regular graph $\Gamma$ is edge-regular, if there exists an integer $\lambda$ such that every pair of adjacent vertices of $\Gamma$ have exactly $\lambda$  common neighbours. In this paper we classify $2$-extendable edge-regular graphs of even order and diameter $2$.


10.37236/1315 ◽  
1997 ◽  
Vol 4 (1) ◽  
Author(s):  
M. A. Fiol

Let $G$ be a regular (connected) graph with $n$ vertices and $d+1$ distinct eigenvalues. As a main result, it is shown that $G$ is an $r$-antipodal distance-regular graph if and only if the distance graph $G_d$ is constituted by disjoint copies of the complete graph $K_r$, with $r$ satisfying an expression in terms of $n$ and the distinct eigenvalues.


10.37236/136 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
C. Dalfó ◽  
M. A. Fiol ◽  
E. Garriga

Considering a connected graph $G$ with diameter $D$, we say that it is $k$-walk-regular, for a given integer $k$ $(0\leq k \leq D)$, if the number of walks of length $\ell$ between any pair of vertices only depends on the distance between them, provided that this distance does not exceed $k$. Thus, for $k=0$, this definition coincides with that of walk-regular graph, where the number of cycles of length $\ell$ rooted at a given vertex is a constant through all the graph. In the other extreme, for $k=D$, we get one of the possible definitions for a graph to be distance-regular. In this paper we show some algebraic characterizations of $k$-walk-regularity, which are based on the so-called local spectrum and predistance polynomials of $G$.


2001 ◽  
Vol 10 (2) ◽  
pp. 127-135 ◽  
Author(s):  
M. A. FIOL

A graph Γ with diameter d is strongly distance-regular if Γ is distance-regular and its distance-d graph Γd is strongly regular. Some known examples of such graphs are the connected strongly regular graphs, with distance-d graph Γd = Γ (the complement of Γ), and the antipodal distance-regular graphs. Here we study some spectral conditions for a (regular or distance-regular) graph to be strongly distance-regular. In particular, for the case d = 3 the following characterization is proved. A regular (connected) graph Γ, with distinct eigenvalues λ0 > λ1 > λ2 > λ3, is strongly distance-regular if and only if λ2 = −1, and Γ3 is k-regular with degree k satisfying an expression which depends only on the order and the different eigenvalues of Γ.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


Sign in / Sign up

Export Citation Format

Share Document