scholarly journals Transient Wave Propagation Dynamics with Edge-Based Smoothed Finite Element Method and Bathe Time Integration Technique

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yingbin Chai ◽  
Yongou Zhang

In this work, the edge-based smoothed finite element method (ES-FEM) is incorporated with the Bathe time integration scheme to solve the transient wave propagation problems. The edge-based gradient smoothing technique (GST) can properly soften the “overly soft” system matrices from the standard finite element approach; then, the spatial numerical dispersion error of the calculated solutions for wave problems can be significantly reduced. To effectively solve the transient wave propagation problems, the Bathe time integration scheme is employed to perform the involved time integration. Due to the appropriate “numerical dissipation effects” from the Bathe time integration method, the spurious oscillations in the relatively large wave numbers (high frequencies) can be effectively suppressed; then, the temporal numerical dispersion error in the calculated solutions can also be notably controlled. A number of supporting numerical examples are considered to examine the capabilities of the present approach. The numerical results show that ES-FEM works very well with the Bathe time integration technique, and much more numerical solutions can be reached for solving transient wave propagation problems compared to the standard FEM.

1981 ◽  
Vol 103 (4) ◽  
pp. 657-664 ◽  
Author(s):  
H. U. Akay ◽  
A. Ecer

Analysis of transonic flow through a cascade of airfoils is investigated using the finite element method. Development of a computational grid suitable for complex flow structures and different types of boundary conditions is presented. An efficient pseudo-time integration scheme is developed for the solution of equations. Modeling of the shock and the convergence characteristics of the developed scheme are discussed. Numerical results include a 45 deg staggered cascade of NACA 0012 airfoils with inlet flow Mach number of 0.8 and angles of attack 1, 0, and −1 deg.


2021 ◽  
pp. 105678952110405
Author(s):  
Young Kwang Hwang ◽  
Suyeong Jin ◽  
Jung-Wuk Hong

In this study, an effective numerical framework for fracture simulations is proposed using the edge-based smoothed finite element method (ES-FEM) and isotropic damage model. The duality between the Delaunay triangulation and Voronoi tessellation is utilized for the mesh construction and the compatible use of the finite element solution with the Voronoi-cell lattice geometry. The mesh irregularity is introduced to avoid calculating the biased crack path by adding random variation in the nodal coordinates, and the ES-FEM elements are defined along the Delaunay edges. With the Voronoi tessellation, each nodal mass is calculated and the fractured surfaces are visualized along the Voronoi edges. The rotational degrees of freedom are implemented for each node by introducing the elemental formulation of the Voronoi-cell lattice model, and the accurate visualizations of the rotational motions in the Voronoi diagram are achieved. An isotropic damage model is newly incorporated into the ES-FEM formulation, and the equivalent elemental length is introduced with an additional geometric factor to simulate the consistent softening behaviors with reducing the mesh sensitivity. The full matrix form of the smoothed strain-displacement matrix is constructed for optimal use in the element-wise computations during explicit time integration, and parallel computing is implemented for the enhancement of the computational efficiency. The simulated results are compared with the theoretical solutions or experimental results, which demonstrates the effectiveness of the proposed methodology in the simulations of the quasi-brittle fractures.


Author(s):  
V. Chawla ◽  
T. A. Laursen

Abstract 1D impact between two identical bars is modeled as a simple spring-mass system as would be generated by a finite element discretization. Some commonly used time integrators are applied to the system to demonstrate defects in the numerical solution as compared to the exact analytical solution. Using energy conservation as the criterion for stability, a new time integration scheme is proposed that imposes a persistency condition for dynamic contact. Finite element simulation with Lagrange multipliers for enforcing the contact constraints shows exact energy and momentum conservation.


Author(s):  
Genady Shagal ◽  
Shaker A. Meguid

Abstract The coupled dynamic response of two cooperating robots handling two flexible payloads for the purpose of fixtureless assembly and manufacturing is treated using a new algorithm. In this algorithm, the equations describing the dynamics of the system are obtained using Lagrange’s method for the rigid robot links and the finite element method for the flexible payloads. A new time integration scheme is developed to treat the coupled equations of motion of the rigid links for a given displacement of the flexible payloads. The finite element equations of the flexible payloads are then treated using an implicit approach. The new algorithm was verified using simplified examples and was later used to examine the dynamic response of two cooperating robot arms manipulating flexible payloads which are typical of the automotive industry.


Sign in / Sign up

Export Citation Format

Share Document