scholarly journals The Finite Element Numerical Investigation of Free Surface Newtonian and Non-Newtonian Fluid Flows in the Rectangular Tanks

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Puyang Gao

In this paper, we develop a new computational framework to investigate the sloshing free surface flow of Newtonian and non-Newtonian fluids in the rectangular tanks. We simulate the flow via a two-phase model and employ the fixed unstructured mesh in the computation to avoid the mesh distortion and reconstruction. As for the solution of Navier–Stokes equation, we utilize the SUPG finite element method based on the splitting scheme. The same order interpolation functions are then used for velocity and pressure. Moreover, the moving interface is captured via the concise level set method. We take advantage of the implicit discontinuous Galerkin method to handle the solution of level set and its reinitialization equations. A mass correction technique is also added to ensure the mass conservation property. The dam break-free surface flow is simulated firstly to demonstrate the validity of our mathematical model. In addition, the sloshing Newtonian fluid in the tank with flat and rough bottoms is considered to illustrate the feasibility and robustness of our computational scheme. Finally, the development of free surface for non-Newtonian fluid is also studied in the two tanks, and the influence of power-law index on the sloshing fluid flow is analyzed.

1988 ◽  
Vol 104 (1-4) ◽  
pp. 289-299 ◽  
Author(s):  
Litsa Anastasiadou-Partheniou ◽  
George A. Terzidis

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Jianjian Xin ◽  
Fulong Shi ◽  
Qiu Jin ◽  
Lin Ma

Abstract A three-dimensional (3D) gradient-augmented level set (GALS) two-phase flow model with a pretreated reinitialization procedure is developed to simulate violent sloshing in a cuboid tank. Based on a two-dimensional (2D) GALS method, 3D Hermite, and 3D Lagrange polynomial schemes are derived to interpolate the level set function and the velocity field at arbitrary positions over a cell, respectively. A reinitialization procedure is performed on a 3D narrow band to treat the strongly distorted interface and improve computational efficiency. In addition, an identification-correction technique is proposed and incorporated into the reinitialization procedure to treat the tiny droplet which can distort the free surface shape, even lead to computation failure. To validate the accuracy of the present GALS method and the effectiveness of the proposed identification-correction technique, a 3D velocity advection case is first simulated. The present method is validated to have better mass conservation property than the classical level set and original GALS methods. Also, distorted and thin interfaces are well captured on all grid resolutions by the present GALS method. Then, sloshing under coupled surge and sway excitation, sloshing under rotational excitation are simulated. Good agreements are obtained when the present wave and pressure results are compared with the experimental and numerical results. In addition, the highly nonlinear free surface is observed, and the relationship between the excitation frequency and the impulsive pressure is investigated.


2013 ◽  
Vol 655-657 ◽  
pp. 144-148
Author(s):  
Xia Ma ◽  
Wu Gui Hua ◽  
Jie Li ◽  
Gang Li

The aim of the paper is to present the results of investigations conducted on the free surface flow in a Pelton turbine model bucket. Unsteady numerical simulations, based on the two-phase homogeneous model, are performed together with flow visualizations. The results obtained allow defining five distinct zones in the bucket from the flow patterns. The flow patterns in the buckets are analyzed from the results. An investigation of the momentum transfer between the water particles and the bucket is performed, showing the regions of the bucket surface that contribute the most to the torque. The study is also conducted for the backside of the bucket, evidencing a probable Coanda interaction between the bucket cutout area and the Water jet.


Sign in / Sign up

Export Citation Format

Share Document