scholarly journals A SEIQR Model considering the Effects of Different Quarantined Rates on Worm Propagation in Mobile Internet

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yonghua Zheng ◽  
Jianhua Zhu ◽  
Chaoan Lai

At present, Wi-Fi is a common medium for connecting smart devices to networks in factories. The application of mobile Internet in smart manufacturing system (SMIS) speeds up the process of smart manufacturing but also increases SMIS vulnerability to worm attack from mobile networks. In this paper, we propose a new SLBQR (susceptible-latent-breaking out-quarantined-recovered) model considering vaccination strategies with temporary immunity and quarantined strategies. Based on basic reproduction number, we give expression of quarantined rate φ and obtain the threshold ϕ∗ of quarantined rate φ such that the worm-free equilibrium is asymptotically stable when ϕ≥ϕ∗, implying that the worm dies out eventually and its attack remains under control; the endemic equilibrium is asymptotically stable when φ<φ∗, namely, the worm is always persistent and spreading within a population. Hence, we give the quarantined strategy ϕ≥ϕ∗ to suppress the spread of virus. In addition, by theoretical analysis, we can conclude that even if the immunity time is unlimited, endemic equilibrium will not become worm-free. In other words, there is a mutation in the virus, which proves that there is no vaccination strategy with permanent immunity. Finally, we simulate our model with different temporary immune time and quarantine rates, and the results verify our theorem.

Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 328 ◽  
Author(s):  
Yanli Ma ◽  
Jia-Bao Liu ◽  
Haixia Li

In this paper, an SIQR (Susceptible, Infected, Quarantined, Recovered) epidemic model with vaccination, elimination, and quarantine hybrid strategies is proposed, and the dynamics of this model are analyzed by both theoretical and numerical means. Firstly, the basic reproduction number R 0 , which determines whether the disease is extinct or not, is derived. Secondly, by LaSalles invariance principle, it is proved that the disease-free equilibrium is globally asymptotically stable when R 0 < 1 , and the disease dies out. By Routh-Hurwitz criterion theory, we also prove that the disease-free equilibrium is unstable and the unique endemic equilibrium is locally asymptotically stable when R 0 > 1 . Thirdly, by constructing a suitable Lyapunov function, we obtain that the unique endemic equilibrium is globally asymptotically stable and the disease persists at this endemic equilibrium if it initially exists when R 0 > 1 . Finally, some numerical simulations are presented to illustrate the analysis results.


2020 ◽  
Vol 24 (5) ◽  
pp. 917-922
Author(s):  
J. Andrawus ◽  
F.Y. Eguda ◽  
I.G. Usman ◽  
S.I. Maiwa ◽  
I.M. Dibal ◽  
...  

This paper presents a new mathematical model of a tuberculosis transmission dynamics incorporating first and second line treatment. We calculated a control reproduction number which plays a vital role in biomathematics. The model consists of two equilibrium points namely disease free equilibrium and endemic equilibrium point, it has been shown that the disease free equilibrium point was locally asymptotically stable if thecontrol reproduction number is less than one and also the endemic equilibrium point was locally asymptotically stable if the control reproduction number is greater than one. Numerical simulation was carried out which supported the analytical results. Keywords: Mathematical Model, Biomathematics, Reproduction Number, Disease Free Equilibrium, Endemic Equilibrium Point


2011 ◽  
Vol 04 (01) ◽  
pp. 93-108
Author(s):  
QINGKAI KONG ◽  
ZHIPENG QIU ◽  
YUN ZOU

The host migration is one of the important elements that cause the worldwide diffusion and outbreak of many vector-host diseases. In this paper, we formulate a patchy model to investigate the effect of host migration between two patches on the spread of a vector-host disease. The results of the paper show that the reproduction number R0 is a threshold value that determines the uniform persistence and extinction of the disease. If the reproduction number R0 < 1 the disease free equilibrium (DFE) is locally asymptotically stable. If the reproduction number R0 > 1 then the DFE is unstable and the system is uniformly persistent. It is also shown that a unique endemic equilibrium, which exists when R0 > 1, is locally stable if both regions are identical.


Author(s):  
Sofita Suherman ◽  
Fatmawati Fatmawati ◽  
Cicik Alfiniyah

Ebola disease is one of an infectious disease caused by a virus. Ebola disease can be transmitted through direct contact with Ebola’s patient, infected medical equipment, and contact with the deceased individual. The purpose of this paper is to analyze the stability of equilibriums and to apply the optimal control of treatment on the mathematical model of the spread of Ebola with medical treatment. Model without control has two equilibria, namely non-endemic equilibrium (E0) and endemic equilibrium (E1) The existence of endemic equilibrium and local stability depends on the basic reproduction number (R0). The non-endemic equilibrium is locally asymptotically stable if  R0 < 1 and endemic equilibrium tend to asymptotically stable if R0 >1 . The problem of optimal control is then solved by Pontryagin’s Maximum Principle. From the numerical simulation result, it is found that the control is effective to minimize the number of the infected human population and the number of the infected human with medical treatment population compare without control.


CAUCHY ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 122-132
Author(s):  
Joko Harianto ◽  
Inda Puspita Sari

Discussion of local stability analysis of SVIR models in this article is included in the scope of applied mathematics. The purpose of this discussion was to provide results of local stability analysis that had not been discussed in some articles related to the SVIR model. The SVIR models discussed in this article involve logistics growth in the vaccinated compartment. The results obtained, i.e. if the basic reproduction number less than one and m is positive, then there is one equilibrium point i.e. E0 is locally asymptotically stable. In the field of epidemiology, this means that the disease will disappear from the population. However, if the basic reproduction number more than one and b1 more than b, then there are two equilibrium points i.e. disease-free equilibrium point denoted by E0 and the endemic equilibrium point denoted by E1*. In this case the endemic equilibrium point E1* is locally asymptotically stable. In the field of epidemiology, this means that the disease will remain in the population. The numerical simulation supports these results.


2021 ◽  
Vol 2 (1) ◽  
pp. 29-41
Author(s):  
Erzalina Ayu Satya Megananda ◽  
Cicik Alfiniyah ◽  
Miswanto Miswanto

Ebola disease is an infectious disease caused by a virus from the genus Ebolavirus and the family Filoviridae. Ebola disease is one of the most deadly diseases for human. The purpose of the thesis is to analyze the stability of the equilibrium point and to apply the optimal control of quarantine on a mathematical model of the spread of ebola. Model without control has two equilibria, non-endemic equilibrium and endemic equilibrium. The existence of endemic equilibrium and local stability depends on the basic reproduction number (R0). The non-endemic equilibrium is asymptotically stable if R0 1 and endemic equilibrium tend to asymptotically stable if R0 1. The problem of optimal control is solved by Pontryagin’s Maximum Principle. From the numerical simulation, the result shows that control is effective enough to minimize the number of infected human population and to minimize the cost of its control.


2020 ◽  
Vol 13 (07) ◽  
pp. 2050062
Author(s):  
Yibeltal Adane Terefe ◽  
Semu Mitiku Kassa

A deterministic model for the transmission dynamics of melioidosis disease in human population is designed and analyzed. The model is shown to exhibit the phenomenon of backward bifurcation, where a stable disease-free equilibrium co-exists with a stable endemic equilibrium when the basic reproduction number [Formula: see text] is less than one. It is further shown that the backward bifurcation dynamics is caused by the reinfection of individuals who recovered from the disease and relapse. The existence of backward bifurcation implies that bringing down [Formula: see text] to less than unity is not enough for disease eradication. In the absence of backward bifurcation, the global asymptotic stability of the disease-free equilibrium is shown whenever [Formula: see text]. For [Formula: see text], the existence of at least one locally asymptotically stable endemic equilibrium is shown. Sensitivity analysis of the model, using the parameters relevant to the transmission dynamics of the melioidosis disease, is discussed. Numerical experiments are presented to support the theoretical analysis of the model. In the numerical experimentations, it has been observed that screening and treating individuals in the exposed class has a significant impact on the disease dynamics.


2010 ◽  
Vol 03 (03) ◽  
pp. 299-312 ◽  
Author(s):  
SHU-MIN GUO ◽  
XUE-ZHI LI ◽  
XIN-YU SONG

In this paper, an age-structured SEIS epidemic model with infectivity in incubative period is formulated and studied. The explicit expression of the basic reproduction number R0 is obtained. It is shown that the disease-free equilibrium is globally asymptotically stable if R0 < 1, at least one endemic equilibrium exists if R0 > 1. The stability conditions of endemic equilibrium are also given.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
F. Talay Akyildiz ◽  
Fehaid Salem Alshammari

AbstractThis paper investigates a new model on coronavirus-19 disease (COVID-19), that is complex fractional SIR epidemic model with a nonstandard nonlinear incidence rate and a recovery, where derivative operator with Mittag-Leffler kernel in the Caputo sense (ABC). The model has two equilibrium points when the basic reproduction number $R_{0} > 1$ R 0 > 1 ; a disease-free equilibrium $E_{0}$ E 0 and a disease endemic equilibrium $E_{1}$ E 1 . The disease-free equilibrium stage is locally and globally asymptotically stable when the basic reproduction number $R_{0} <1$ R 0 < 1 , we show that the endemic equilibrium state is locally asymptotically stable if $R_{0} > 1$ R 0 > 1 . We also prove the existence and uniqueness of the solution for the Atangana–Baleanu SIR model by using a fixed-point method. Since the Atangana–Baleanu fractional derivative gives better precise results to the derivative with exponential kernel because of having fractional order, hence, it is a generalized form of the derivative with exponential kernel. The numerical simulations are explored for various values of the fractional order. Finally, the effect of the ABC fractional-order derivative on suspected and infected individuals carefully is examined and compared with the real data.


2016 ◽  
Vol 09 (05) ◽  
pp. 1650068 ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Yasir Khan ◽  
Sehra Khan ◽  
Saeed Islam

This study considers SEIVR epidemic model with generalized nonlinear saturated incidence rate in the host population horizontally to estimate local and global equilibriums. By using the Routh–Hurwitz criteria, it is shown that if the basic reproduction number [Formula: see text], the disease-free equilibrium is locally asymptotically stable. When the basic reproduction number exceeds the unity, then the endemic equilibrium exists and is stable locally asymptotically. The system is globally asymptotically stable about the disease-free equilibrium if [Formula: see text]. The geometric approach is used to present the global stability of the endemic equilibrium. For [Formula: see text], the endemic equilibrium is stable globally asymptotically. Finally, the numerical results are presented to justify the mathematical results.


Sign in / Sign up

Export Citation Format

Share Document