scholarly journals Analisis Kestabilan dan Kontrol Optimal Model Matematika Penyebaran Penyakit Ebola dengan Penanganan Medis

Author(s):  
Sofita Suherman ◽  
Fatmawati Fatmawati ◽  
Cicik Alfiniyah

Ebola disease is one of an infectious disease caused by a virus. Ebola disease can be transmitted through direct contact with Ebola’s patient, infected medical equipment, and contact with the deceased individual. The purpose of this paper is to analyze the stability of equilibriums and to apply the optimal control of treatment on the mathematical model of the spread of Ebola with medical treatment. Model without control has two equilibria, namely non-endemic equilibrium (E0) and endemic equilibrium (E1) The existence of endemic equilibrium and local stability depends on the basic reproduction number (R0). The non-endemic equilibrium is locally asymptotically stable if  R0 < 1 and endemic equilibrium tend to asymptotically stable if R0 >1 . The problem of optimal control is then solved by Pontryagin’s Maximum Principle. From the numerical simulation result, it is found that the control is effective to minimize the number of the infected human population and the number of the infected human with medical treatment population compare without control.

2021 ◽  
Vol 2 (1) ◽  
pp. 29-41
Author(s):  
Erzalina Ayu Satya Megananda ◽  
Cicik Alfiniyah ◽  
Miswanto Miswanto

Ebola disease is an infectious disease caused by a virus from the genus Ebolavirus and the family Filoviridae. Ebola disease is one of the most deadly diseases for human. The purpose of the thesis is to analyze the stability of the equilibrium point and to apply the optimal control of quarantine on a mathematical model of the spread of ebola. Model without control has two equilibria, non-endemic equilibrium and endemic equilibrium. The existence of endemic equilibrium and local stability depends on the basic reproduction number (R0). The non-endemic equilibrium is asymptotically stable if R0 1 and endemic equilibrium tend to asymptotically stable if R0 1. The problem of optimal control is solved by Pontryagin’s Maximum Principle. From the numerical simulation, the result shows that control is effective enough to minimize the number of infected human population and to minimize the cost of its control.


2010 ◽  
Vol 03 (03) ◽  
pp. 299-312 ◽  
Author(s):  
SHU-MIN GUO ◽  
XUE-ZHI LI ◽  
XIN-YU SONG

In this paper, an age-structured SEIS epidemic model with infectivity in incubative period is formulated and studied. The explicit expression of the basic reproduction number R0 is obtained. It is shown that the disease-free equilibrium is globally asymptotically stable if R0 < 1, at least one endemic equilibrium exists if R0 > 1. The stability conditions of endemic equilibrium are also given.


2020 ◽  
Vol 17 (1) ◽  
pp. 71-81
Author(s):  
Sulma Sulma ◽  
Syamsuddin Toaha ◽  
Kasbawati Kasbawati

Meningitis is an infectious disease caused by bacteria, viruses, and protosoa and has the potential to cause an outbreak. Vaccination and campaign are carried out as an effort to prevent the spread of meningitis, treatment reduces the number of deaths caused by the disease and the number of infected people. This study aims to analyze and determine the stability of equilibrium point of the mathematical model of the spread of meningitis using five compartments namely susceptibles, carriers, infected without symptoms, infected with symptoms, and recovered with the effect of vaccination, campaign, and treatment. The results obtained from the analysis of the model that there are two equilibrium points, namely non endemic and endemic equilibrium points. If a certain condition is met then the non endemic equilibrium point will be asymptotically stable. Numerical simulations show that the spread of disease decreases with the influence of vaccination, campaign, and treatment.


2009 ◽  
Vol 02 (03) ◽  
pp. 357-362 ◽  
Author(s):  
LUJU LIU

A tuberculosis (TB) model with two latent periods, short-term latent period (E1) and long-term latent period (E2), and fast and slow progressions is analyzed. The stability of the unique endemic equilibrium of the model is proved. It turns out that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number R0 ≤ 1, and the endemic equilibrium is globally asymptotically stable if R0 > 1.


2020 ◽  
Author(s):  
Jangyadatta Behera ◽  
Aswin Kumar Rauta ◽  
Yerra Shankar Rao ◽  
Sairam Patnaik

Abstract In this paper, a mathematical model is proposed on the spread and control of corona virus disease2019 (COVID19) to ascertain the impact of pre quarantine for suspected individuals having travel history ,immigrants and new born cases in the susceptible class following the lockdown or shutdown rules and adopted the post quarantine process for infected class. Set of nonlinear ordinary differential equations (ODEs) are generated and parameters like natural mortality rate, rate of COVID-19 induced death, rate of immigrants, rate of transmission and recovery rate are integrated in the scheme. A detailed analysis of this model is conducted analytically and numerically. The local and global stability of the disease is discussed mathematically with the help of Basic Reproduction Number. The ODEs are solved numerically with the help of Runge-Kutta 4th order method and graphs are drawn using MATLAB software to validate the analytical result with numerical simulation. It is found that both results are in good agreement with the results available in the existing literatures. The stability analysis is performed for both disease free equilibrium and endemic equilibrium points. The theorems based on Routh-Hurwitz criteria and Lyapunov function are proved .It is found that the system is locally asymptotically stable at disease free and endemic equilibrium points for basic reproduction number less than one and globally asymptotically stable for basic reproduction number greater than one. Finding of this study suggest that COVID-19 would remain pandemic with the progress of time but would be stable in the long-term if the pre and post quarantine policy for asymptomatic and symptomatic individuals are implemented effectively followed by social distancing, lockdown and containment.


Author(s):  
Dian Grace Ludji ◽  
Paian Sianturi ◽  
Endar Nugrahani

This research focused on the modification of deterministic mathematical models for tuberculosis with vaccination. It also aimed to see the effect of giving the vaccine. It was done by adding vaccine compartments to people who were given the vaccine in the susceptible compartment. The population was divided into nine different groups. Those were susceptible individuals (S), vaccine (V), new latently infected (E1), diagnosed latently infected (E2), undiagnosed latently infected (E3), undiagnosed actively infected (l), diagnosed actively infected with prompt treatment (Dr), diagnosed actively infected with delay treatment (Dp), and treated (T). Basic reproduction number was constructed using next-generation matrix. Sensitivity analysis was also conducted. The results show that the model comprises two equilibriums: diseasefree equilibrium (T0) and endemic equilibrium (T*). It also shows that there is a relationship between R0 and two equilibriums. Moreover, the disease-free equilibrium point is asymptotically stable local when it is R0 < 1. Then, the disease-endemic equilibrium point is asymptotically stable local when it is R0 > 1. Furthermore, the parameters of β, ρ, and γ are the most important parameter.


2020 ◽  
Vol 1 (2) ◽  
pp. 104
Author(s):  
Adiluhung Setya Pambudi ◽  
Fatmawati Fatmawati ◽  
Windarto Windarto

Mosaic disease is an infectious disease that attacks Jatropha curcas caused by Begomoviruses. Mosaic disease can be transmitted through the bite of a whitefly as a vector. In this paper, we studied a mathematical model of mosaic disease spreading of Jatropha curcas with awareness effect. We also studied the effect of prevention and extermination strategies as optimal control variables. Based on the results of the model analysis, we found two equilibriums namely the mosaic-free equilibrium and the endemic equilibrium. The stability of equilibriums and the existence of endemic equilibrium depend on basic reproduction number ( ). When , the spread of mosaic disease does not occur in the population, while when , the spread of mosaic disease occurs in the population. Furthermore, we determined existence of the optimal control variable by Pontryagin's Maximum Principle method. Simulation results show that prevention and extermination have a significant effect in eliminating mosaic disease.


2017 ◽  
Vol 10 (07) ◽  
pp. 1750096 ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Yasir Khan ◽  
Taj Wali Khan ◽  
Saeed Islam

In this paper, a dynamical system of a SEIQV mathematical model with nonlinear generalized incidence arising in biology is investigated. The stability of the disease-free and endemic equilibrium is discussed. The basic reproduction number of the model is obtained. We found that the disease-free and endemic equilibrium is stable locally as well as globally asymptotically stable. For [Formula: see text], the disease-free equilibrium is stable both locally and globally and for [Formula: see text], the endemic equilibrium is stable globally asymptotically. Finally, some numerical results are presented.


Author(s):  
Oluwafemi Temidayo J. ◽  
Azuaba E. ◽  
Lasisi N. O.

In this study, we analyzed the endemic equilibrium point of a malaria-hygiene mathematical model. We prove that the mathematical model is biological and meaningfully well-posed. We also compute the basic reproduction number using the next generation method. Stability analysis of the endemic equilibrium point show that the point is locally stable if reproduction number is greater that unity and globally stable by the Lasalle’s invariant principle. Numerical simulation to show the dynamics of the compartment at various hygiene rate was carried out.


Author(s):  
Mojeeb Al-Rahman EL-Nor Osman ◽  
Appiagyei Ebenezer ◽  
Isaac Kwasi Adu

In this paper, an Immunity-Susceptible-Exposed-Infectious-Recovery (MSEIR) mathematical model was used to study the dynamics of measles transmission. We discussed that there exist a disease-free and an endemic equilibria. We also discussed the stability of both disease-free and endemic equilibria.  The basic reproduction number  is obtained. If , then the measles will spread and persist in the population. If , then the disease will die out.  The disease was locally asymptotically stable if  and unstable if  . ALSO, WE PROVED THE GLOBAL STABILITY FOR THE DISEASE-FREE EQUILIBRIUM USING LASSALLE'S INVARIANCE PRINCIPLE OF Lyaponuv function. Furthermore, the endemic equilibrium was locally asymptotically stable if , under certain conditions. Numerical simulations were conducted to confirm our analytic results. Our findings were that, increasing the birth rate of humans, decreasing the progression rate, increasing the recovery rate and reducing the infectious rate can be useful in controlling and combating the measles.


Sign in / Sign up

Export Citation Format

Share Document