scholarly journals Nonzero Staircase Modulation Scheme for Switching DC-DC Boost Converter

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Ayodeji Olalekan Salau ◽  
Candidus U. Eya ◽  
Omeje Crescent Onyebuchi

This paper presents a novel modulation scheme known as the nonzero staircase modulation scheme for switching DC-DC boost converters. This modulation scheme generates two distinct pulse trains/firing signals when a 50 Hz nonzero staircase modulating signal is compared with a 1.5 kHz triangular wave signal. Unlike the conventional modulation schemes, the proposed novel modulation scheme provides two distinctive trains of pulse-width modulated signals for mitigating low and high harmonics. It also possesses 0.56% total harmonic distortions (THD) of the output voltage waveform system, a power output of 4591 W, and THD of 1.12% in the DC-DC boost converter system. It has a simple design and low power loss of 209 W. The proposed scheme enables the single switch boost DC-DC converter used to have an efficiency of 96%. The proposed scheme can be applied in single switch or double switch boost DC-DC converter based-hospital equipment.

2015 ◽  
Vol 793 ◽  
pp. 280-285
Author(s):  
J.A. Soo ◽  
N.A. Rahman ◽  
J.H. Leong

This paper proposed a novel single-stage square wave buck-boost inverter (SWBBI). The proposed inverter is designed by using dual buck-boost converters. The input DC voltage of the proposed inverter can be either stepped-down or stepped-up in square output voltage waveform depending on the duty-cycle applied for each buck-boost converter. This characteristic is not found in conventional voltage source inverter where the output voltage is always lower than the input DC voltage. The proposed inverter is analyzed by a series of simulations using MATLAB/Simulink as well as experiments by using different values of duty-cycle. A conclusion about the feasibility of the proposed inverter is given by comparing the simulation and experimental results.


2011 ◽  
Vol 4 (7) ◽  
pp. 827 ◽  
Author(s):  
H. Bodur ◽  
S. Cetin ◽  
G. Yanik

Author(s):  
M. Z. Aihsan ◽  
N. I. Ahmad ◽  
W. A. Mustafa ◽  
N. A. Rahman ◽  
J. A. Soo

<span lang="EN-US">This paper proposes an alternative topology of an inverter to the existing topologies available in the market. A prototype is intended with the purpose of investigates the possibility of designing an inverter using two Boost Converters. This project initialized with a series of simulations using Matlab in order to determine the feasibility of the proposed topology. The next step is the design and development of the proposed prototype where suitable electronics components are chosen based on the simulation result. A PIC microcontroller is used to control the proposed prototype where a control scheme is created based on the programming in the microcontroller. The performance of the proposed prototype has been verified to be optimum by several practical testing using different values of capacitor, inductor and duty cycle. Lastly, data and analysis are presented in a proper mannered way. In the end, this project intends to produce stepped-up square wave output voltage waveform by proper controlling of two Boost Converters.</span>


Author(s):  
M. Z. Aihsan ◽  
N. I. Ahmad ◽  
W. A. Mustafa ◽  
N. A. Rahman ◽  
J. A. Soo

<span lang="EN-US">This paper proposes an alternative topology of an inverter to the existing topologies available in the market. A prototype is intended with the purpose of investigates the possibility of designing an inverter using two Boost Converters. This project initialized with a series of simulations using Matlab in order to determine the feasibility of the proposed topology. The next step is the design and development of the proposed prototype where suitable electronics components are chosen based on the simulation result. A PIC microcontroller is used to control the proposed prototype where a control scheme is created based on the programming in the microcontroller. The performance of the proposed prototype has been verified to be optimum by several practical testing using different values of capacitor, inductor and duty cycle. Lastly, data and analysis are presented in a proper mannered way. In the end, this project intends to produce stepped-up square wave output voltage waveform by proper controlling of two Boost Converters.</span>


Sign in / Sign up

Export Citation Format

Share Document