scholarly journals Degenerate Analogues of Euler Zeta, Digamma, and Polygamma Functions

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Fuli He ◽  
Ahmed Bakhet ◽  
Mohamed Akel ◽  
Mohamed Abdalla

In recent years, much attention has been paid to the role of degenerate versions of special functions and polynomials in mathematical physics and engineering. In the present paper, we introduce a degenerate Euler zeta function, a degenerate digamma function, and a degenerate polygamma function. We present several properties, recurrence relations, infinite series, and integral representations for these functions. Furthermore, we establish identities involving hypergeometric functions in terms of degenerate digamma function.

2019 ◽  
Vol 13 (08) ◽  
pp. 2050142
Author(s):  
Ravi Dwivedi ◽  
Vivek Sahai

This paper deals with the [Formula: see text]-analogues of generalized zeta matrix function, digamma matrix function and polygamma matrix function. We also discuss their regions of convergence, integral representations and matrix relations obeyed by them. We also give a few identities involving digamma matrix function and [Formula: see text]-hypergeometric matrix series.


2004 ◽  
Vol 2004 (67) ◽  
pp. 3653-3662
Author(s):  
Anthony A. Ruffa

A procedure for generating infinite series identities makes use of the generalized method of exhaustion by analytically evaluating the inner series of the resulting double summation. Identities are generated involving both elementary and special functions. Infinite sums of special functions include those of the gamma and polygamma functions, the Hurwitz Zeta function, the polygamma function, the Gauss hypergeometric function, and the Lerch transcendent. The procedure can be automated withMathematica(or equivalent software).


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1431
Author(s):  
Junesang Choi ◽  
Recep Şahin ◽  
Oğuz Yağcı ◽  
Dojin Kim

A number of generalized Hurwitz–Lerch zeta functions have been presented and investigated. In this study, by choosing a known extended Hurwitz–Lerch zeta function of two variables, which has been very recently presented, in a systematic way, we propose to establish certain formulas and representations for this extended Hurwitz–Lerch zeta function such as integral representations, generating functions, derivative formulas and recurrence relations. We also point out that the results presented here can be reduced to yield corresponding results for several less generalized Hurwitz–Lerch zeta functions than the extended Hurwitz–Lerch zeta function considered here. For further investigation, among possibly various more generalized Hurwitz–Lerch zeta functions than the one considered here, two more generalized settings are provided.


Author(s):  
Anatoly Kilbas ◽  
Anna Koroleva ◽  
Sergei Rogosin

AbstractThis paper surveys one of the last contributions by the late Professor Anatoly Kilbas (1948–2010) and research made under his advisorship. We briefly describe the historical development of the theory of the discussed multi-parametric Mittag-Leffler functions as a class of the Wright generalized hypergeometric functions. The method of the Mellin-Barnes integral representations allows us to extend the considered functions to the case of arbitrary values of parameters. Thus, the extended Mittag-Leffler-type functions appear. The properties of these special functions and their relations to the fractional calculus are considered. Our results are based mainly on the properties of the Fox H-functions, as one of the widest class of special functions.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 483 ◽  
Author(s):  
Mehmet Ali Özarslan ◽  
Ceren Ustaoğlu

Very recently, the incomplete Pochhammer ratios were defined in terms of the incomplete beta function B y ( x , z ) . With the help of these incomplete Pochhammer ratios, we introduce new incomplete Gauss, confluent hypergeometric, and Appell’s functions and investigate several properties of them such as integral representations, derivative formulas, transformation formulas, and recurrence relations. Furthermore, incomplete Riemann-Liouville fractional integral operators are introduced. This definition helps us to obtain linear and bilinear generating relations for the new incomplete Gauss hypergeometric functions.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1715
Author(s):  
Ghazi S. Khammash ◽  
Praveen Agarwal ◽  
Junesang Choi

Various k-special functions such as k-gamma function, k-beta function and k-hypergeometric functions have been introduced and investigated. Recently, the k-gamma function of a matrix argument and k-beta function of matrix arguments have been presented and studied. In this paper, we aim to introduce an extended k-gamma function of a matrix argument and an extended k-beta function of matrix arguments and investigate some of their properties such as functional relations, inequality, integral formula, and integral representations. Also an application of the extended k-beta function of matrix arguments to statistics is considered.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 714
Author(s):  
Mohamed Abdalla ◽  
Muajebah Hidan

Traditionally, the special function theory has many applications in various areas of mathematical physics, economics, statistics, engineering, and many other branches of science. Inspired by certain recent extensions of the k-analogue of gamma, the Pochhammer symbol, and hypergeometric functions, this work is devoted to the study of the k-analogue of Gauss hypergeometric functions by the Hadamard product. We give a definition of the Hadamard product of k-Gauss hypergeometric functions (HPkGHF) associated with the fourth numerator and two denominator parameters. In addition, convergence properties are derived from this function. We also discuss interesting properties such as derivative formulae, integral representations, and integral transforms including beta transform and Laplace transform. Furthermore, we investigate some contiguous function relations and differential equations connecting the HPkGHF. The current results are more general than previous ones. Moreover, the proposed results are useful in the theory of k-special functions where the hypergeometric function naturally occurs.


2012 ◽  
Vol 23 (12) ◽  
pp. 1250084 ◽  
Author(s):  
CHARLES SCHWARTZ

A new computational procedure is offered to provide simple, accurate and flexible methods for using modern computers to give numerical evaluations of the various Bessel functions. The trapezoidal rule, applied to suitable integral representations, may become the method of choice for evaluation of the many special functions of mathematical physics.


Filomat ◽  
2017 ◽  
Vol 31 (1) ◽  
pp. 125-140 ◽  
Author(s):  
Rekha Srivastava ◽  
Ritu Agarwal ◽  
Sonal Jain

Recently, Srivastava et al. [Integral Transforms Spec. Funct. 23 (2012), 659-683] introduced the incomplete Pochhammer symbols that led to a natural generalization and decomposition of a class of hypergeometric and other related functions as well as to certain potentially useful closed-form representations of definite and improper integrals of various special functions of applied mathematics and mathematical physics. In the present paper, our aim is to establish several formulas involving integral transforms and fractional derivatives of this family of incomplete hypergeometric functions. As corollaries and consequences, many interesting results are shown to follow from our main results.


Author(s):  
Salem Saleh Barahmah

The purpose of present paper is to introduce a new extension of Hurwitz-Lerch Zeta function by using the extended Beta function. Some recurrence relations, generating relations and integral representations are derived for that new extension.


Sign in / Sign up

Export Citation Format

Share Document