scholarly journals Investigation of the k-Analogue of Gauss Hypergeometric Functions Constructed by the Hadamard Product

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 714
Author(s):  
Mohamed Abdalla ◽  
Muajebah Hidan

Traditionally, the special function theory has many applications in various areas of mathematical physics, economics, statistics, engineering, and many other branches of science. Inspired by certain recent extensions of the k-analogue of gamma, the Pochhammer symbol, and hypergeometric functions, this work is devoted to the study of the k-analogue of Gauss hypergeometric functions by the Hadamard product. We give a definition of the Hadamard product of k-Gauss hypergeometric functions (HPkGHF) associated with the fourth numerator and two denominator parameters. In addition, convergence properties are derived from this function. We also discuss interesting properties such as derivative formulae, integral representations, and integral transforms including beta transform and Laplace transform. Furthermore, we investigate some contiguous function relations and differential equations connecting the HPkGHF. The current results are more general than previous ones. Moreover, the proposed results are useful in the theory of k-special functions where the hypergeometric function naturally occurs.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Mohamed Abdalla ◽  
Muajebah Hidan ◽  
Salah Mahmoud Boulaaras ◽  
Bahri-Belkacem Cherif

Hypergeometric functions have many applications in various areas of mathematical analysis, probability theory, physics, and engineering. Very recently, Hidan et al. (Math. Probl. Eng., ID 5535962, 2021) introduced the (p, k)-extended hypergeometric functions and their various applications. In this line of research, we present an expansion of the k-Gauss hypergeometric functions and investigate its several properties, including, its convergence properties, derivative formulas, integral representations, contiguous function relations, differential equations, and fractional integral operators. Furthermore, the current results contain several of the familiar special functions as particular cases, and this extension may enrich the theory of special functions.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Junesang Choi ◽  
Praveen Agarwal

A remarkably large number of integral transforms and fractional integral formulas involving various special functions have been investigated by many authors. Very recently, Agarwal gave some integral transforms and fractional integral formulas involving theFp(α,β)(·). In this sequel, using the same technique, we establish certain integral transforms and fractional integral formulas for the generalized Gauss hypergeometric functionsFp(α,β,m)(·). Some interesting special cases of our main results are also considered.


Author(s):  
Anatoly Kilbas ◽  
Anna Koroleva ◽  
Sergei Rogosin

AbstractThis paper surveys one of the last contributions by the late Professor Anatoly Kilbas (1948–2010) and research made under his advisorship. We briefly describe the historical development of the theory of the discussed multi-parametric Mittag-Leffler functions as a class of the Wright generalized hypergeometric functions. The method of the Mellin-Barnes integral representations allows us to extend the considered functions to the case of arbitrary values of parameters. Thus, the extended Mittag-Leffler-type functions appear. The properties of these special functions and their relations to the fractional calculus are considered. Our results are based mainly on the properties of the Fox H-functions, as one of the widest class of special functions.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1715
Author(s):  
Ghazi S. Khammash ◽  
Praveen Agarwal ◽  
Junesang Choi

Various k-special functions such as k-gamma function, k-beta function and k-hypergeometric functions have been introduced and investigated. Recently, the k-gamma function of a matrix argument and k-beta function of matrix arguments have been presented and studied. In this paper, we aim to introduce an extended k-gamma function of a matrix argument and an extended k-beta function of matrix arguments and investigate some of their properties such as functional relations, inequality, integral formula, and integral representations. Also an application of the extended k-beta function of matrix arguments to statistics is considered.


Filomat ◽  
2017 ◽  
Vol 31 (1) ◽  
pp. 125-140 ◽  
Author(s):  
Rekha Srivastava ◽  
Ritu Agarwal ◽  
Sonal Jain

Recently, Srivastava et al. [Integral Transforms Spec. Funct. 23 (2012), 659-683] introduced the incomplete Pochhammer symbols that led to a natural generalization and decomposition of a class of hypergeometric and other related functions as well as to certain potentially useful closed-form representations of definite and improper integrals of various special functions of applied mathematics and mathematical physics. In the present paper, our aim is to establish several formulas involving integral transforms and fractional derivatives of this family of incomplete hypergeometric functions. As corollaries and consequences, many interesting results are shown to follow from our main results.


Filomat ◽  
2015 ◽  
Vol 29 (8) ◽  
pp. 1811-1819 ◽  
Author(s):  
Shy-Der Lin ◽  
H.M. Srivastava ◽  
Mu-Ming Wong

Recently, Srivastava et al. [H. M. Srivastava, M. A. Chaudhry and R. P. Agarwal, The incomplete Pochhammer symbols and their applications to hypergeometric and related functions, Integral Transforms Spec. Funct. 23 (2012), 659-683] introduced and initiated the study of many interesting fundamental properties and characteristics of a certain pair of potentially useful families of the so-called generalized incomplete hypergeometric functions. Ever since then there have appeared many closely-related works dealing essentially with notable developments involving various classes of generalized hypergeometric functions and generalized hypergeometric polynomials, which are defined by means of the corresponding incomplete and other novel extensions of the familiar Pochhammer symbol. Here, in this sequel to some of these earlier works, we derive several general families of hypergeometric generating functions by applying Srivastava?s Theorem. We also indicate various (known or new) special cases and consequences of the results presented in this paper.


Author(s):  
Dimiter Prodanov

The manuscript surveys the special functions of the Fox-Wright type. These functions are generalizations of the hypergeometric functions. Notable representatives of the type are the Mittag-Leffler functions and the Wright function. The integral representations of such functions are given and the conditions under which these function can be represented by simpler functions are demonstrated. The connection with generalized fractional differential and integral operators is demonstrated and discussed.


Author(s):  
Roberto Garrappa ◽  
Sergei Rogosin ◽  
Francesco Mainardi

AbstractRecently S. Gerhold and R. Garra – F. Polito independently introduced a new function related to the special functions of the Mittag-Leffler family. This function is a generalization of the function studied by É. Le Roy in the period 1895-1905 in connection with the problem of analytic continuation of power series with a finite radius of convergence. In our note we obtain two integral representations of this special function, calculate its Laplace transform, determine an asymptotic expansion of this function on the negative semi-axis (in the case of an integer third parameter


1973 ◽  
Vol 14 (2) ◽  
pp. 111-119 ◽  
Author(s):  
Robert B. Kelman ◽  
Chester A. Koper

A systematic and easily automated least squares procedure, not using integral equations or special functions, is presented for approximating the solutions of general dual trigonometric equations. This is desirable, since current analytic methods apply only to special equations, require the use of integral equation and special function theory, and do not lend themselves easily to numerical work; see, e.g. [1, 2, 6, 8, 9,10, 11, 12, 13, 14, 15, 16, 17].


Analysis ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Abdus Saboor ◽  
Gauhar Rahman ◽  
Zunaira Anjum ◽  
Kottakkaran Sooppy Nisar ◽  
Serkan Araci

AbstractIn this paper, we define a new extension of Srivastava’s triple hypergeometric functions by using a new extension of Pochhammer’s symbol that was recently proposed by Srivastava, Rahman and Nisar [H. M. Srivastava, G. Rahman and K. S. Nisar, Some extensions of the Pochhammer symbol and the associated hypergeometric functions, Iran. J. Sci. Technol. Trans. A Sci. 43 2019, 5, 2601–2606]. We present their certain basic properties such as integral representations, derivative formulas, and recurrence relations. Also, certain new special cases have been identified and some known results are recovered from main results.


Sign in / Sign up

Export Citation Format

Share Document