scholarly journals Characterization of Dielectric Relaxation Process by Impedance Spectroscopy for Polymers: Nitrile Butadiene Rubber and Ethylene Propylene Diene Monomer

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Jae Kap Jung ◽  
Young Il Moon ◽  
Gyung Hyun Kim ◽  
Nae Hyung Tak

We invented a dispersion analysis program that analyzes the relaxation processes from dielectric permittivity based on a combination of the Havriliak–Negami and conductivity contribution functions. By applying the created program to polymers such as nitrile butadiene rubber (NBR) and ethylene propylene diene monomer (EPDM), several relaxation processes were characterized: an α process due to segmental motions of the C-C bond, an α′ process attributed to fluctuations in the end-to-end dipole vector of the polymer chain, the conduction contribution by the filler observed above room temperature, and secondary relaxation processes β and γ of motion for the side group in NBR. In the EPDM specimen, the β process associated with the rotational motion of the side groups, the α process associated with the relaxation of local segmental motion, and the αβ process associated with the origin of the β process at high temperatures above 305 K were observed. The Maxwell–Wagner–Sillars effect and conduction contribution were also presented. The molecular chains responsible for the relaxation processes were assigned by building molecular models of the two polymers. The temperature dependence of the relaxation strength and the shape parameters that characterize the process were investigated. From the temperature-dependent relaxation analysis, the merged αβ process, activation energy, and glass transition temperature were determined and compared.

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Young Il Moon ◽  
Jae Kap Jung ◽  
Ki Soo Chung

The dielectric permittivity of synthetic rubber polymers, nitrile butadiene rubber (NBR) and ethylene propylene diene monomer (EPDM), with both frequency and temperature variations, was thoroughly investigated by dielectric relaxation spectroscopy (DRS). The spectrum versus frequency of DRS was analyzed with the semiempirical Havriliak–Negami formula and conductivity contribution by employing the newly developed “dispersion analyzer” analysis program. The main dielectric relaxations called the α- and β-processes, associated with the cooperative motion of chains in polymers, were discovered in the low-temperature region. In the high-temperature region, we found Maxwell–Wagner–Sillars (MWS) relaxation associated with polymer interfacing and normal-mode (α’) relaxation responsible for end-to-end dipole vector motion. The activation energies of schematic molecular chains responsible for the relaxation processes were obtained with the information about its motional mode. The glass transition temperature and dipole moment for the side group were also determined and compared with those from previous studies. In the EPDM specimen, the peaks of α- and β-relaxation merged at high temperature and were separated with decreasing temperature. The first observations of both merging and splitting were consistent with the results on the temperature dependency of the relaxation strength. Both contour mapping and three-dimensional plots for the two rubbers provide visual information for the distribution and mapping of relaxation.


2016 ◽  
Vol 49 (4) ◽  
pp. 298-314 ◽  
Author(s):  
Sara Estagy ◽  
Saeed Ostad Movahed ◽  
Soheil Yazdanbakhsh ◽  
Majid Karim Nezhad

The market for commercial polymer blends has grown steadily. A good blend should have strong interphases between different parts of the constituted polymers. Lack of strong interphases is a classical problem of the blend industry. Ethylene-propylene-diene monomer rubber (EPDM)/styrene-butadiene rubber (SBR) blends have a very good aging resistance and good compression sets. However, these rubbers are partially miscible. To improve the miscibility of EPDM and SBR in their blends, a Lewis acid, AlCl3, was used to form EPDM–g–SBR copolymer through Friedel–Crafts reactions. The existence of covalent bonds between EPDM and SBR macromolecules was studied by the cure traces of the blends, that is, ΔTorque, Fourier transform infrared spectrums, differential scanning calorimetry (DSC) heat flow curves, thermogravimetric analysis curves, and scanning electron (SEM) micrographs. Subsequently, several blends with EPDM/SBR ratio of 40/60 and with various AlCl3 amounts were prepared and after curing, their mechanical properties were measured and compared. The results showed covalent bonds formed between SBR–EPDM and SBR–SBR macromolecules. An exothermic change in heat flow in the DSC curve was observed around 111.28°C, which can be attributed to the formation of carbocations in Friedel–Crafts reactions. Adding 2 phr AlCl3 had an efficient effect on EPDM–SBR and or SBR–SBR linkages. The mechanical properties of the cured blends, that is, tensile strength were lower when compared with corresponding values for prepared compound with SBR. Excellent compatibility between the two polymers and strong interphases were observed in SEM micrograph of the cured blend with 1 phr AlCl3.


Sign in / Sign up

Export Citation Format

Share Document