Compatibilization of nitrile-butadiene rubber/ethylene-propylene-diene monomer blends by mercapto-modified ethylene-vinyl acetate copolymers

2003 ◽  
Vol 91 (3) ◽  
pp. 1404-1412 ◽  
Author(s):  
Marcia G. Oliveira ◽  
Bluma G. Soares
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Young Il Moon ◽  
Jae Kap Jung ◽  
Ki Soo Chung

The dielectric permittivity of synthetic rubber polymers, nitrile butadiene rubber (NBR) and ethylene propylene diene monomer (EPDM), with both frequency and temperature variations, was thoroughly investigated by dielectric relaxation spectroscopy (DRS). The spectrum versus frequency of DRS was analyzed with the semiempirical Havriliak–Negami formula and conductivity contribution by employing the newly developed “dispersion analyzer” analysis program. The main dielectric relaxations called the α- and β-processes, associated with the cooperative motion of chains in polymers, were discovered in the low-temperature region. In the high-temperature region, we found Maxwell–Wagner–Sillars (MWS) relaxation associated with polymer interfacing and normal-mode (α’) relaxation responsible for end-to-end dipole vector motion. The activation energies of schematic molecular chains responsible for the relaxation processes were obtained with the information about its motional mode. The glass transition temperature and dipole moment for the side group were also determined and compared with those from previous studies. In the EPDM specimen, the peaks of α- and β-relaxation merged at high temperature and were separated with decreasing temperature. The first observations of both merging and splitting were consistent with the results on the temperature dependency of the relaxation strength. Both contour mapping and three-dimensional plots for the two rubbers provide visual information for the distribution and mapping of relaxation.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Jae Kap Jung ◽  
Young Il Moon ◽  
Gyung Hyun Kim ◽  
Nae Hyung Tak

We invented a dispersion analysis program that analyzes the relaxation processes from dielectric permittivity based on a combination of the Havriliak–Negami and conductivity contribution functions. By applying the created program to polymers such as nitrile butadiene rubber (NBR) and ethylene propylene diene monomer (EPDM), several relaxation processes were characterized: an α process due to segmental motions of the C-C bond, an α′ process attributed to fluctuations in the end-to-end dipole vector of the polymer chain, the conduction contribution by the filler observed above room temperature, and secondary relaxation processes β and γ of motion for the side group in NBR. In the EPDM specimen, the β process associated with the rotational motion of the side groups, the α process associated with the relaxation of local segmental motion, and the αβ process associated with the origin of the β process at high temperatures above 305 K were observed. The Maxwell–Wagner–Sillars effect and conduction contribution were also presented. The molecular chains responsible for the relaxation processes were assigned by building molecular models of the two polymers. The temperature dependence of the relaxation strength and the shape parameters that characterize the process were investigated. From the temperature-dependent relaxation analysis, the merged αβ process, activation energy, and glass transition temperature were determined and compared.


Sign in / Sign up

Export Citation Format

Share Document