scholarly journals A Class of Shock Wave Solution to Singularly Perturbed Nonlinear Time-Delay Evolution Equations

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yi-Hu Feng ◽  
Lei Hou

Nonlinear singularly perturbed problem for time-delay evolution equation with two parameters is studied. Using the variables of the multiple scales method, homogeneous equilibrium method, and approximation expansion method from the singularly perturbed theories, the structure of the solution to the time-delay problem with two small parameters is discussed. Under suitable conditions, first, the outer solution to the time-delay initial boundary value problem is given. Second, the multiple scales variables are introduced to obtain the shock wave solution and boundary layer corrective terms for the solution. Then, the stretched variable is applied to get the initial layer correction terms. Finally, using the singularly perturbed theory and the fixed point theorem from functional analysis, the uniform validity of asymptotic expansion solution to the problem is proved. In addition, the proposed method possesses the advantages of being very convenient to use.

2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Ting Zhang ◽  
Chun Shen

The regularization of the shock wave solution to the Riemann problem for the relativistic Burgers equation is considered. For Riemann initial data consisting of a single decreasing jump, we find that the regularization of nonlinear convective term cannot capture the correct shock wave solution. In order to overcome it, we consider a new regularization technique called the observable divergence method introduced by Mohseni and discover that it can capture the correct shock wave solution. In addition, we take the Helmholtz filter for the fully explicit computation.


2011 ◽  
Vol 89 (9) ◽  
pp. 979-984 ◽  
Author(s):  
Houria Triki ◽  
B.J.M. Sturdevant ◽  
T. Hayat ◽  
O.M. Aldossary ◽  
A. Biswas

This study obtained the shock wave or kink solutions of the variants of the Kadomtsev–Petviashvili equation with generalized evolution. There are three types of variants of this equation that were considered. The relation between the parameters and the constraint conditions will naturally fall out as a consequence of the derivation of the shock wave solution.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Taha Aziz ◽  
A. Fatima ◽  
F. M. Mahomed

This study focuses on obtaining a new class of closed-form shock wave solution also known as soliton solution for a nonlinear partial differential equation which governs the unsteady magnetohydrodynamics (MHD) flow of an incompressible fourth grade fluid model. The travelling wave symmetry formulation of the model leads to a shock wave solution of the problem. The restriction on the physical parameters of the flow problem also falls out naturally in the course of derivation of the solution.


Sign in / Sign up

Export Citation Format

Share Document