scholarly journals An Approach for Handling Uncertainties Related to Behaviour and Vehicle Mixes in Traffic Simulation Experiments with Automated Vehicles

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Johan Olstam ◽  
Fredrik Johansson ◽  
Adriano Alessandrini ◽  
Peter Sukennik ◽  
Jochen Lohmiller ◽  
...  

The introduction of automated vehicles is expected to affect traffic performance. Microscopic traffic simulation offers good possibilities to investigate the potential effects of the introduction of automated vehicles. However, current microscopic traffic simulation models are designed for modelling human-driven vehicles. Thus, modelling the behaviour of automated vehicles requires further development. There are several possible ways to extend the models, but independent of approach a large problem is that the information available on how automated vehicles will behave is limited to today’s partly automated vehicles. How future generations of automated vehicles will behave will be unknown for some time. There are also large uncertainties related to what automation functions are technically feasible, allowed, and actually activated by the users, for different road environments and at different stages of the transition from 0 to 100% of automated vehicles. This article presents an approach for handling several of these uncertainties by introducing conceptual descriptions of four different types of driving behaviour of automated vehicles (Rail-safe, Cautious, Normal, and All-knowing) and presents how these driving logics can be implemented in a commonly used traffic simulation program. The driving logics are also linked to assumptions on which logic that could operate in which environment at which part of the transition period. Simulation results for four different types of road facilities are also presented to illustrate potential effects on traffic performance of the driving logics. The simulation results show large variations in throughput, from large decreases to large increases, depending on driving logic and penetration rate.

1998 ◽  
Vol 1644 (1) ◽  
pp. 103-114 ◽  
Author(s):  
Yunlong Zhang ◽  
Larry E. Owen ◽  
James E. Clark

The purpose of this paper is to explore various traffic modeling aspects and theories that may overcome some of the limitations in existing microscopic simulation models. A multiregime microscopic traffic simulation approach has been formulated featuring realistic and comprehensive carfollowing and lane-changing logic. A prototype implementation of the multiregime approach was developed in C++ and extensively tested. The multiregime simulation results demonstrate the efficiency and validity of the proposed models for a broad range of traffic scenarios. The test and validation results indicate that the model and program outperformed traditional methods and other existing traffic simulation programs. The validity and efficiency of the model is attributed to the fact that the regimes were added to the model incrementally to reflect increasing agreement with real-world traffic flow. The techniques and corresponding models will be used to improve existing microscopic traffic simulation models and programs.


Author(s):  
Byungkyu (Brian) Park ◽  
Hongtu (Maggie) Qi

Microscopic traffic simulation models have been playing an important role in the evaluation of transportation engineering and planning practices for the past few decades, particularly in cases in which field implementation is difficult or expensive to conduct. To achieve high fidelity and credibility for a traffic simulation model, model calibration and validation are of utmost importance. Most calibration efforts reported in the literature have focused on the informal practice, and they have seldom proposed a systematic procedure or guideline for the calibration and validation of simulation models. This paper proposes a procedure for microscopic simulation model calibration. The validity of the proposed procedure was demonstrated by use of a case study of an actuated signalized intersection by using a widely used microscopic traffic simulation model, Verkehr in Staedten Simulation (VISSIM). The simulation results were compared with multiple days of field data to determine the performance of the calibrated model. It was found that the calibrated parameters obtained by the proposed procedure generated performance measures that were representative of the field conditions, while the simulation results obtained with the default and best-guess parameters were significantly different from the field data.


2020 ◽  
Vol 170 ◽  
pp. 474-481
Author(s):  
Paweł Gora ◽  
Christos Katrakazas ◽  
Arkadiusz Drabicki ◽  
Faqhrul Islam ◽  
Piotr Ostaszewski

2018 ◽  
Vol 4 (1) ◽  
pp. 78-98 ◽  
Author(s):  
Mikoto Yanai ◽  
Kazuki Abe ◽  
Tomonori Yamada ◽  
Hideki Fujii ◽  
Shinobu Yoshimura

1999 ◽  
Vol 26 (6) ◽  
pp. 840-851 ◽  
Author(s):  
A F Al-Kaisy ◽  
J A Stewart ◽  
M Van Aerde

Microscopic traffic simulation models are being increasingly used to evaluate Intelligent Transportation Systems (ITS) strategies and to complement empirical data in developing new analytical procedures and methodologies. Lane changing rules are an essential element of any microscopic traffic simulation model. While most of these rules are based on theories and hypotheses, to date no attempt has been made to investigate the consistency of lane changing behaviour from microscopic simulation with empirical observations. The research presented in this paper examined this consistency at freeway weaving areas using empirical data. These data were collected in the late 1980s at several major freeway weaving sections in the State of California. The microscopic traffic simulation model INTEGRATION was used to perform simulation experiments in this research. Vehicle distributions, both total and by type of movement, were used as measures to investigate the lane changing activity that took place at these freeway areas. This examination revealed significant agreement between patterns of lane changing behaviour as observed in the field and as reproduced by microscopic simulation. Most quantitative discrepancies were shown to be a function of user-specified input data or due to some inherent limitations in the empirical data.Key words: simulation, lane changing, weaving, freeways.


Author(s):  
Wilco Burghout ◽  
Haris N. Koutsopoulos ◽  
Ingmar Andréasson

Traffic simulation is an important tool for modeling the operations of dynamic traffic systems. Although microscopic simulation models provide a detailed representation of the traffic process, macroscopic and mesoscopic models capture the traffic dynamics of large networks in less detail but without the problems of application and calibration of microscopic models. This paper presents a hybrid mesoscopic–microscopic model that applies microscopic simulation to areas of specific interest while simulating a large surrounding network in less detail with a mesoscopic model. The requirements that are important for a hybrid model to be consistent across the models at different levels of detail are identified. These requirements vary from the network and route choice consistency to the consistency of the traffic dynamics at the boundaries of the microscopic and mesoscopic submodels. An integration framework that satisfies these requirements is proposed. A prototype hybrid model is used to demonstrate the application of the integration framework and the solution of the various integration issues. The hybrid model integrates MITSIMLab, a microscopic traffic simulation model, and Mezzo, a newly developed mesoscopic model. The hybrid model is applied in two case studies. The results are promising and support both the proposed architecture and the importance of integrating microscopic and mesoscopic models.


Sign in / Sign up

Export Citation Format

Share Document