scholarly journals A New Variable Exponential Power Reaching Law of Complementary Terminal Sliding Mode Control

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Feng Xu ◽  
Na An ◽  
Jianlin Mao ◽  
Shubo Yang

In this article, a new nonlinear algorithm based on the sliding mode control is developed for the ball and plate control system to improve dynamic response and steady-state tracking accuracy of the control system. First, a new sliding mode reaching law is proposed, variable exponential power reaching law (VEPRL), which is expressed in two different forms including a nonlinear combination function term and a variable exponential power term, so that it can be adjusted adaptively according to the state of the system by the variable exponential power reaching term during the reaching process. The computation results show that it can not only effectively weaken the chattering phenomenon but also increase the rate of the system state reaching to the sliding mode surface. Moreover, it has the characteristic of global finite-time convergence. Besides, a complementary terminal sliding mode control (CTSMC) method is designed by combining the integral terminal sliding surface with the complementary sliding surface to improve the convergence rate. Based on the proposed VEPRL and CTSMC, a new sliding mode control method for the ball and plate system is presented. Finally, simulation results show the superiority and effectiveness of the proposed control method.

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Gao ◽  
Xiuping Chen ◽  
Haibo Du ◽  
Song Bai

For the position tracking control problem of permanent magnet linear motor, an improved fast continuous-time nonsingular terminal sliding mode control algorithm based on terminal sliding mode control method is proposed. Specifically, first, for the second-order model of position error dynamic system, a new continuous-time fast terminal sliding surface is introduced and an improved continuous-time fast terminal sliding mode control law is proposed. Then rigorous theoretical analysis is provided to demonstrate the finite-time stability of the closed-loop system by using the Lyapunov function. Finally, numerical simulations are given to verify the effectiveness and advantages of the proposed fast nonsingular terminal sliding mode control method.


2021 ◽  
Author(s):  
Normaisharah Mamat ◽  
Mohd Fauzi Othman ◽  
Mohd Fitri Mohd Yakub

Abstract Building structures are prone to damage due to natural disasters, and this challenges structural engineers to design safer and more robust building structures. This study is conducted to prevent these consequences by implementing a control strategy that can enhance a building's stability and reduce the risk of damage. Therefore, to realize the structural integrity of a building, a hybrid control device is equipped with control strategies to enhance robustness. The control strategy proposed in this study is adaptive nonsingular terminal sliding mode control (ANTSMC). ANTSMC is an integrated controller of radial basis function neural network (RBFNN) and nonsingular terminal sliding mode control (NTSMC), which has a fast dynamic response, finite-time convergence, and the ability to enhance the control performance against a considerable uncertainty. The proposed controller is designed based on the sliding surface and the control law. The building with a two-degree-of-freedom (DOF) system is designed in Matlab/Simulink and validated with the experimental work connected to the LMSTest.Lab software. The performance of this controller is compared with those of the terminal sliding mode control (TSMC) and NTSMC in terms of the displacement response, sliding surface, and the probability of damage. The result showed that the proposed controller, ANTSMC can suppress vibrations up to 46%, and its percentage probability of complete damage is 15% from the uncontrolled structure. Thus, these findings are imperative towards increasing the safety level in building structures and occupants, and reducing damage costs in the event of a disaster.


2013 ◽  
Vol 347-350 ◽  
pp. 302-306 ◽  
Author(s):  
Ji Chen Li ◽  
Feng Qi Gao ◽  
Guang Long Wang ◽  
Ming Wang ◽  
Wen Jie Zhu ◽  
...  

Novel reaching law to nonsingular terminal sliding mode control for the control of the second order nonlinear uncertain system is introduced in this paper. The problems of singularity, chattering and slow convergence of the terminal sliding mode control, and verify the stability of the new controller is analyzed. Due to the premise of eliminating the singular value in the nonsingular terminal sliding mode control, the new reaching law based on the power reaching law enables the finite time convergence of the system equilibrium. By applying the new controller to the inverted pendulum system, the sliding surface had been proved fast and the system chattering had been reduced at the same time. Simulation results indict that the system converges to the equilibrium in a short time and the proposed method is feasible and effective.


Sign in / Sign up

Export Citation Format

Share Document