scholarly journals Integrating Image and Network-Based Topological Data through Spatial Data Fusion for Indoor Location-Based Services

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Dasol Ahn ◽  
Alexis Richard C. Claridades ◽  
Jiyeong Lee

Nowadays, the importance and utilization of spatial information are recognized. Particularly in urban areas, the demand for indoor spatial information draws attention and most commonly requires high-precision 3D data. However accurate, most methodologies present problems in construction cost and ease of updating. Images are accessible and are useful to express indoor space, but pixel data cannot be applied directly to provide indoor services. A network-based topological data gives information about the spatial relationships of the spaces depicted by the image, as well as enables recognition of these spaces and the objects contained within. In this paper, we present a data fusion methodology between image data and a network-based topological data, without the need for data conversion, use of a reference data, or a separate data model. Using the concept of a Spatial Extended Point (SEP), we implement this methodology to establish a correspondence between omnidirectional images and IndoorGML data to provide an indoor spatial service. The proposed algorithm used position information identified by a user in the image to define a 3D region to be used to distinguish correspondence with the IndoorGML and indoor POI data. We experiment with a corridor-type indoor space and construct an indoor navigation platform.

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Hyo-jin Jung ◽  
Jiyeong Lee

Different indoor representation methods have been studied for their ability to provide indoor location-based services (LBS). Among them, omnidirectional imaging is one of the most typical and simple methods for representing an indoor space. However, a georeferenced omnidirectional image cannot be used for simple attribute searches, spatial queries, and spatial awareness analyses. To perform these functions, topological data are needed to define the features of and spatial relationships among spatial objects including indoor spaces as well as facilities like CCTV cameras considered in patrol service applications. Therefore, this study proposes an indoor space application data model for an indoor patrol service that can implement functions suited to linking indoor space data and service objects. In order to do this, the study presents a method for linking data between omnidirectional images representing indoor spaces and topological data on indoor spaces based on the concept of IndoorGML. Also, we conduct an experimental implementation of the integrated 3D indoor navigation model for patrol service using GIS data. Based on the results, we evaluate the benefits of using such a 3D data fusion method that integrates omnidirectional images with vector-based topological data models based on IndoorGML for providing indoor LBS in built environments.


Author(s):  
Ki-Joune Li

With recent progress of mobile devices and indoor positioning technologies, it becomes possible to provide location-based services in indoor space as well as outdoor space. It is in a seamless way between indoor and outdoor spaces or in an independent way only for indoor space. However, we cannot simply apply spatial models developed for outdoor space to indoor space due to their differences. For example, coordinate reference systems are employed to indicate a specific position in outdoor space, while the location in indoor space is rather specified by cell number such as room number. Unlike outdoor space, the distance between two points in indoor space is not determined by the length of the straight line but the constraints given by indoor components such as walls, stairs, and doors. For this reason, we need to establish a new framework for indoor space from fundamental theoretical basis, indoor spatial data models, and information systems to store, manage, and analyse indoor spatial data. In order to provide this framework, an international standard, called IndoorGML has been developed and published by OGC (Open Geospatial Consortium). This standard is based on a cellular notion of space, which considers an indoor space as a set of non-overlapping cells. It consists of two types of modules; core module and extension module. While core module consists of four basic conceptual and implementation modeling components (geometric model for cell, topology between cells, semantic model of cell, and multi-layered space model), extension modules may be defined on the top of the core module to support an application area. As the first version of the standard, we provide an extension for indoor navigation.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Junho Park ◽  
Dasol Ahn ◽  
Jiyeong Lee

Geospatial datasets are currently constructed, managed, and utilized individually according to the spatial scale of the real world, such as the ground/surface/underground or indoor/outdoor, as well the particular purpose of the geospatial data used for location-based services. In addition, LBS applications use an optimal data model and data format according to their particular purpose, and thus, various datasets exist to represent the same spatial features. Such duplicated geospatial datasets and geographical feature-based GIS data cause serious problems in the financial area, compatibility issues among LBS systems, and data integration problems among the various geospatial datasets generated independently for different systems. We propose a geospatial data fusion model called the topological relation-based data fusion model (TRDFM) using topological relations among spatial objects in order to integrate different geospatial datasets and different data formats. The proposed model is a geospatial data fusion model implemented in a spatial information application and is used to directly provide spatial information-based services without data conversion or exchange of geometric data generated by different data models. The proposed method was developed based on an extension of the AnchorNode concept of IndoorGML. The topological relationships among spatial objects are defined and described based upon the basic concept of IndoorGML. This paper describes the concept of the proposed TRDFM and shows an experimental implementation of the proposed data fusion model using commercial 3D GIS software. Finally, the limitations of this study and areas of future research are summarized.


Author(s):  
Ki-Joune Li

With recent progress of mobile devices and indoor positioning technologies, it becomes possible to provide location-based services in indoor space as well as outdoor space. It is in a seamless way between indoor and outdoor spaces or in an independent way only for indoor space. However, we cannot simply apply spatial models developed for outdoor space to indoor space due to their differences. For example, coordinate reference systems are employed to indicate a specific position in outdoor space, while the location in indoor space is rather specified by cell number such as room number. Unlike outdoor space, the distance between two points in indoor space is not determined by the length of the straight line but the constraints given by indoor components such as walls, stairs, and doors. For this reason, we need to establish a new framework for indoor space from fundamental theoretical basis, indoor spatial data models, and information systems to store, manage, and analyse indoor spatial data. In order to provide this framework, an international standard, called IndoorGML has been developed and published by OGC (Open Geospatial Consortium). This standard is based on a cellular notion of space, which considers an indoor space as a set of non-overlapping cells. It consists of two types of modules; core module and extension module. While core module consists of four basic conceptual and implementation modeling components (geometric model for cell, topology between cells, semantic model of cell, and multi-layered space model), extension modules may be defined on the top of the core module to support an application area. As the first version of the standard, we provide an extension for indoor navigation.


Author(s):  
A. R. C. Claridades ◽  
D. Ahn ◽  
J. Lee

Abstract. As the interest in indoor spaces increases, there is a growing need for indoor spatial applications. As these spaces grow in complexity and size, research is being carried out towards effective and efficient representation. Omnidirectional images give a snapshot of interiors and give visually rich content, but only contain pixel data. For it to be used in providing indoor services, its limitations must be overcome. First, the images must be connected to each other to represent indoor space continuously based on spatial relationships that may be provided by topological data. Second, the objects and spaces that we see in these images must also be recognized. This paper presents a study on how to link omnidirectional images and an IndoorGML data without the need for data conversion, provision of reference data, or use of different data models in order to provide Indoor Location-Based Service (LBS). We introduce the use of the Spatial Extended Point (SEP) to characterize the relationship between the omnidirectional image and the topological data. Position information of the object is used to define a region of 3D space, to determine the inclusion relationship of an IndoorGML node. We conduct an experimental implementation of the integrated data in the form of a 3D Virtual Tour. The connection of the Omnidirectional images is demonstrated by a visualization of navigation through a hallway towards a room’s interior delivered to the user through a clicking action on the image.


Author(s):  
Weiyan Chen ◽  
Fusang Zhang ◽  
Tao Gu ◽  
Kexing Zhou ◽  
Zixuan Huo ◽  
...  

Floor plan construction has been one of the key techniques in many important applications such as indoor navigation, location-based services, and emergency rescue. Existing floor plan construction methods require expensive dedicated hardware (e.g., Lidar or depth camera), and may not work in low-visibility environments (e.g., smoke, fog or dust). In this paper, we develop a low-cost Ultra Wideband (UWB)-based system (named UWBMap) that is mounted on a mobile robot platform to construct floor plan through smoke. UWBMap leverages on low-cost and off-the-shelf UWB radar, and it is able to construct an indoor map with an accuracy comparable to Lidar (i.e., the state-of-the-art). The underpinning technique is to take advantage of the mobility of radar to form virtual antennas and gather spatial information of a target. UWBMap also eliminates both robot motion noise and environmental noise to enhance weak reflection from small objects for the robust construction process. In addition, we overcome the limited view of single radar by combining multi-view from multiple radars. Extensive experiments in different indoor environments show that UWBMap achieves a map construction with a median error of 11 cm and a 90-percentile error of 26 cm, and it operates effectively in indoor scenarios with glass wall and dense smoke.


Author(s):  
Y.-H. Lu ◽  
J.-Y. Han

Abstract. Global Navigation Satellite System (GNSS) is a matured modern technique for spatial data acquisition. Its performance has a great correlation with GNSS receiver position. However, high-density building in urban areas causes signal obstructions and thus hinders GNSS’s serviceability. Consequently, GNSS positioning is weakened in urban areas, so deriving proper improvement resolutions is a necessity. Because topographic effects are considered the main factor that directly block signal transmission between satellites and receivers, this study integrated aerial borne LiDAR point clouds and a 2D building boundary map to provide reliable 3D spatial information to analyze topographic effects. Using such vector data not only reflected high-quality GNSS satellite visibility calculations, but also significantly reduced data amount and processing time. A signal obstruction analysis technique and optimized computational algorithm were also introduced. In conclusion, this paper proposes using superimposed column method to analyze GNSS receivers’ surrounding environments and thus improve GNSS satellite visibility predictions in an efficient and reliable manner.


2012 ◽  
pp. 105-111 ◽  
Author(s):  
Patrik Skogster

Geographic information is created by manipulating geographic (or spatial) data (generally known by the abbreviation geodata) in a computerized system. Geo-spatial information and geomatics are issues of modern business and research. It is essential to provide their different definitions and roles in order to get an overall picture of the issue. This article discusses about the problematic of definitions, but also the technologies and challenges within spatial data fusion.


2019 ◽  
Vol 11 (17) ◽  
pp. 1957 ◽  
Author(s):  
Jingya Yan ◽  
Siow Jaw ◽  
Kean Soon ◽  
Andreas Wieser ◽  
Gerhard Schrotter

With the pressure of the increasing density of urban areas, some public infrastructures are moving to the underground to free up space above, such as utility lines, rail lines and roads. In the big data era, the three-dimensional (3D) data can be beneficial to understand the complex urban area. Comparing to spatial data and information of the above ground, we lack the precise and detailed information about underground infrastructures, such as the spatial information of underground infrastructure, the ownership of underground objects and the interdependence of infrastructures in the above and below ground. How can we map reliable 3D underground utility networks and use them in the land administration? First, to explain the importance of this work and find a possible solution, this paper observes the current issues of the existing underground utility database in Singapore. A framework for utility data governance is proposed to manage the work process from the underground utility data capture to data usage. This is the backbone to support the coordination of different roles in the utility data governance and usage. Then, an initial design of the 3D underground utility data model is introduced to describe the 3D geometric and spatial information about underground utility data and connect it to the cadastral parcel for land administration. In the case study, the newly collected data from mobile Ground Penetrating Radar is integrated with the existing utility data for 3D modelling. It is expected to explore the integration of new collected 3D data, the existing 2D data and cadastral information for land administration of underground utilities.


Author(s):  
L. Congedo ◽  
F. Baiocco ◽  
S. Brini ◽  
L. Liberti ◽  
M. Munafò

Public access to environmental information is granted by international law. The European Community has established an Infrastructure for Spatial Information (INSPIRE) in order to provide data and information to effected environmental policies. ISPRA coordinates the Italian Environmental Information and Monitoring System (SINA) and represents the national Inspire coordination structure. Moreover, ISPRA disseminates environmental information through reports, on-line services, and WebGis. Recently, a new WebGis has been developed to provide public access to environmental indicators data contained in the annual report on urban environment quality. Soil, water and air quality, waste, industrial risk, transport and mobility, acoustic and electromagnetic pollution, nature and biodiversity, tourism, and energy were analysed in 34 urban areas. The WebGis provides simple and powerful tools to analyze environmental dynamics of urban areas promoting participatory planning. It was designed to easily access and select the indicators data and to represent their spatial and temporal distribution.


Sign in / Sign up

Export Citation Format

Share Document