scholarly journals Fault Detection and Behavior Analysis of Wheelset Bearing Using Adaptive Convolutional Sparse Coding Technique Combined with Bandwidth Optimization

2020 ◽  
Vol 2020 ◽  
pp. 1-27
Author(s):  
Liu He ◽  
Cai Yi ◽  
Jianhui Lin ◽  
Andy C.C. Tan

Wheelset bearing is a critical and easily damaged component of a high-speed train. Wheelset bearing fault diagnosis is of great significance to ensure safe operation of high-speed trains and realize intelligent operation and maintenance. The convolutional sparse coding technique based on the dictionary learning algorithm (CSCT-DLA) provides an effective algorithm framework for extracting the impulses caused by bearing defect. However, dictionary learning is easily affected by foundation vibration and harmonic interference and cannot learn the key structure related to fault impulses. At the same time, the detection performance of fault impulse heavily depends on the selection of parameters in this approach. Union of convolutional dictionary learning algorithm (UC-DLA) is an efficient algorithm in CSCT-DLA. In this paper, UC-DLA is introduced and improved for wheelset bearing fault detection. Finally, a novel bearing fault detection method, adaptive UC-DLA combined with bandwidth optimization (AUC-DLA-BO), is proposed. The mathematical formulation of AUC-DLA-BO is a sort of constrained optimization problem, which can overcome foundation vibration and harmonic interference and adaptively determine parameters related to UC-DLA. The proposed method can detect the fault resonance band adaptively, eliminate the noise with the same frequency band as the fault resonance band, and highlight the bearing fault impulses. Simulated signals and bench tests are used to verify the effectiveness of the proposed method. The results show that AUC-DLA-BO can effectively detect bearing faults and realize the refined analysis of fault behavior.

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6025
Author(s):  
Feiyue Deng ◽  
Chao Liu ◽  
Yongqiang Liu ◽  
Rujiang Hao

Fault detection of axle bearings is crucial to promote the safe, efficient, and reliable running of high-speed trains. In recent decades, time−frequency analysis (TFA) techniques have been widely used in mechanical equipment fault diagnoses. Time-reassigned multisynchrosqueezing transform (TMSST), as a novel time−frequency representation (TFR) algorithm, is more suitable for dealing with strong frequency-varying signals. However, TMSST TFR results are subject to noise interference. It is difficult to extract the accurate time−frequency (TF) fault feature of the axle bearing under a complex working environment. In addition, determination of the TMSST algorithm parameters depends on the personnel’s subjective experience. Therefore, the TMSST result has a great randomicity and has the disadvantage of having a poor reliability. To address the above issues, a hybrid SVD-based denoising and self-adaptive TMSST is proposed for axle bearing fault detection in this paper. The main improvements of the proposed algorithm include the following two aspects: (1) An SVD-based denoising method using the maximum SV mean to determine the reasonable SV order is adopted to eliminate noise interference and to reserve useful fault impulse information. (2) A new evaluation metric, named time−frequency spectrum permutation entropy (TFS-PEn), is put forward for the quantitative evaluation of the performance of TFR for the TMSST, and then a water cycle algorithm (WCA)-based optimized TMSST can adaptively determine the optimal algorithm parameters. In both the simulation and experimental tests, the superiority and effectiveness of the proposed method is compared with the TMSST, short-time Fourier transform (STFT), MSST, wavelet transform (WT), and Hilbert-Huang transform (HHT) methods. The results show that the proposed algorithm has a better performance for extracting the weak fault features of axle bearing under a strong background noise environment.


2019 ◽  
Vol 2019 ◽  
pp. 1-26
Author(s):  
Jianming Ding ◽  
Zhaoheng Zhang ◽  
Yanli Yin

Wheelset bearings are crucial mechanical components of high-speed trains. Wheelset-bearing fault detection is of great significance to ensure the safety of high-speed train service. Convolution sparse representations (CSRs) provide an excellent framework for extracting impulse responses induced by bearing faults. However, the performance of CSR on extracting impulse responses is fairly sensitive to inappropriate selection of method-related parameters, and a convolution model for representing the impulse responses has not been discussed. In view of these two unsolved problems, a convolutional representation model of the impulse response series is developed. A novel fault detection method, named adaptive CSR (ACSR), is then proposed based on combinations of CSR and methods for estimating three parameters related to CSR. Finally, the effectiveness of the proposed ACSR method is validated via simulation, bench testing, and a real-life running test employing a high-speed train.


Author(s):  
Xin Huang ◽  
Guangrui Wen ◽  
Shuzhi Dong ◽  
Haoxuan Zhou ◽  
Zihao Lei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document