scholarly journals The Antiosteoporosis Effects of Yishen Bugu Ye Based on Its Regulation on the Differentiation of Osteoblast and Osteoclast

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yangyang Li ◽  
Yongfeng Zhang ◽  
Weiqi Meng ◽  
Yutong Li ◽  
Tao Huang ◽  
...  

Yishen Bugu Ye (YSBGY), a traditional Chinese medicine comprising 12 types of medicinal herbs, is often prescribed in China to increase bone strength. In this study, the antiosteoporotic effects of YSBGY were investigated in C57BL/6 mice afflicted with dexamethasone- (Dex-) induced osteoporosis (OP). The results showed that YSBGY reduced the interstitial edema in the liver and kidney of mice with Dex-induced OP. It also increased the number of trabecular bone elements and chondrocytes in the femur, promoted cortical bone thickness and trabecular bone density, and modulated the OP-related indexes in the femur and tibia of OP mice. It also increased the serum concentrations of type I collagen, osteocalcin, osteopontin, bone morphogenetic protein-2, bone morphogenetic protein receptor type 2, C-terminal telopeptide of type I collagen, and runt-related transcription factor-2 and reduced those of tartrate-resistant acid phosphatase 5 and nuclear factor of activated T cells in these mice, suggesting that it improved osteoblast differentiation and suppressed osteoclast differentiation. The anti-inflammatory effect of YSBGY was confirmed by the increase in the serum concentrations of interleukin- (IL-) 33 and the decrease in concentrations of IL-1, IL-7, and tumor necrosis factor-α in OP mice. Furthermore, YSBGY enhanced the serum concentrations of superoxide dismutase and catalase in these mice, indicating that it also exerted antioxidative effects. This is the first study to confirm the antiosteoporotic effects of YSBGY in mice with Dex-induced OP, and it showed that these effects may be related to the YSBGY-induced modulation of the osteoblast/osteoclast balance and serum concentrations of inflammatory factors. These results provide experimental evidence supporting the use of YSBGY for supporting bone formation in the clinical setting.

2003 ◽  
Vol 82 (1) ◽  
pp. 23-27 ◽  
Author(s):  
M. Zhao ◽  
J.E. Berry ◽  
M.J. Somerman

As an approach for improving the outcome and predictability of periodontal regenerative therapies, we have focused on determining the responses of cells within the local environment to putative regenerative factors. This study examined the effects of bone morphogenetic protein-2 (BMP-2) on murine cementoblasts in vitro. Northern blot analysis indicated that BMP-2 decreased mRNA levels of bone sialoprotein and type I collagen dose-dependently (10–300 ng/mL). At low doses, up to 100 ng/mL, BMP-2 had no effect on transcripts for osteocalcin and osteopontin, whereas at 300 ng/mL, BMP-2 greatly increased expression of these two genes. BMP-2 also inhibited cementoblast-mediated mineral nodule formation in a dose-dependent manner (inhibition was noted at 10 ng/mL). Noggin reversed the effects of BMP-2 on gene expression and on mineralization. These findings reflect the diverse responses of periodontal cells to BMP-2 and highlight the need to consider the complexity of factors involved in designing predictable regenerative therapies.


2002 ◽  
Vol 30 (3) ◽  
pp. 251-259 ◽  
Author(s):  
K Kusumoto ◽  
K Bessho ◽  
K Fujimura ◽  
J Akioka ◽  
Y Okubo ◽  
...  

Heterotopic osteoinduction in a muscle of a medium-sized, non-human primate (Japanese macaque monkey; Macaca fuscata) was investigated with recombinant human bone morphogenetic protein-2 (rhBMP-2) mixed with atelopeptide type I collagen as the carrier. Nine monkeys were divided into three groups of three: groups I (1.25 mg rhBMP-2), II (250 μg rhBMP-2) and III (50 μg rhBMP-2). Four weeks after implanting into the calf muscle pouch, the implant was examined radiographically and histologically. In one specimen of three in group I, marked radio-opaque shadow, massive chondrogenesis and partial osteogenesis were observed. In the other two specimens, only microscopic calcification signs were recognized. In groups II and III, no findings of heterotopic osteoinduction were radiographically observed; however, nuclei from muscle bundles reacted to rhBMP-2 and were large and round, as in muscle bundles near the site of osteogenesis in group I. A positive control study using rats was carried out in parallel. This was a dose-finding study, with the monkeys in group III acting as a sub-effective dose (placebo) control, and rats acting as an active control, or verum, to show that the techniques are sufficiently sensitive. Bone morphogenetic protein appears to osteoinduce less bony material in soft tissue in primates than in rats.


1997 ◽  
Vol 86 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Gregory A. Helm ◽  
Jonas M. Sheehan ◽  
Jason P. Sheehan ◽  
John A. Jane ◽  
Charles G. diPierro ◽  
...  

✓ Autologous bone grafts are currently considered “gold standard” material for achieving long-term spinal arthrodesis. The present study was performed to determine whether demineralized bone matrix (DBM), type I collagen gels, or bone morphogenetic protein-2 (BMP-2) can improve autologous bone spinal fusions. Using a unilateral decompression—contralateral fusion technique in dogs, each of these materials was added to an autologous bone graft. Volumetric analysis, histological analysis, and biomechanical testing were performed to assess the effectiveness of each material. The DBM had an inhibitory effect on solid bone fusion of the spine, whereas the type I collagen gels improved the bony interface between the graft and the host spine. The BMP-2 strongly enhanced the amount of bone deposition at the fusion site and increased the number of intervertebral levels that were solidly fused. This study strongly supports the use of BMP-2 as an additive to autologous bone grafts in spine stabilization.


2001 ◽  
Vol 204 (3) ◽  
pp. 443-455
Author(s):  
C. Faucheux ◽  
S. Nesbitt ◽  
M. Horton ◽  
J. Price

Deer antlers are a rare example of mammalian epimorphic regeneration. Each year, the antlers re-grow by a modified endochondral ossification process that involves extensive remodelling of cartilage by osteoclasts. This study identified regenerating antler cartilage as a site of osteoclastogenesis in vivo. An in vitro model was then developed to study antler osteoclast differentiation. Cultured as a high-density micromass, cells from non-mineralised cartilage supported the differentiation of large numbers of osteoclast-like multinucleated cells (MNCs) in the absence of factors normally required for osteoclastogenesis. After 48 h of culture, tartrate-resistant acid phosphatase (TRAP)-positive mononuclear cells (osteoclast precursors) were visible, and by day 14 a large number of TRAP-positive MNCs had formed (783+/−200 per well, mean +/− s.e.m., N=4). Reverse transcriptase/polymerase chain reaction (RT-PCR) showed that receptor activator of NF κ B ligand (RANKL) and macrophage colony stimulating factor (M-CSF) mRNAs were expressed in micromass cultures. Antler MNCs have the phenotype of osteoclasts from mammalian bone; they expressed TRAP, vitronectin and calcitonin receptors and, when cultured on dentine, formed F-actin rings and large resorption pits. When cultured on glass, antler MNCs appeared to digest the matrix of the micromass and endocytose type I collagen. Matrix metalloproteinase-9 (MMP-9) may play a role in the resorption of this non-mineralised matrix since it is highly expressed in 100 % of MNCs. In contrast, cathepsin K, another enzyme expressed in osteoclasts from bone, is only highly expressed in resorbing MNCs cultured on dentine. This study identifies the deer antler as a valuable model that can be used to study the differentiation and function of osteoclasts in adult regenerating mineralised tissues.


2021 ◽  
Author(s):  
Long Bai ◽  
Hsun-Ming Chang ◽  
Yi-Min Zhu ◽  
Peter CK Leung

Abstract Background: Hyaluronan is the main component of the cumulus-oocyte complex (COC) matrix and it maintains the basic structure of the COC during ovulation. As a member of the transforming growth factor β (TGF-β) superfamily, bone morphogenetic protein 2 (BMP2) has been identified as a critical regulator of mammalian folliculogenesis and ovulation. However, whether BMP2 can regulate the production of hyaluronan in human granulosa cells has never been elucidated.Methods: In the present study, we investigated the effect of BMP2 on the production of hyaluronan and the underlying molecular mechanism using both immortalized (SVOG) and primary human granulosa-lutein (hGL) cells. The expression of three hyaluronan synthases (including HAS1, HAS2 and HAS3) were examined following cell incubation with BMP2 at different concentrations. The concentrations of the hyaluronan cell culture medium were determined by enzyme-linked immunosorbent assay (ELISA). The TGF-β type I receptor inhibitors (dorsomorphin and DMH-1) and small interfering RNAs targeting ALK2, ALK3, ALK6 and SMAD4 were used to investigate the involvement of TGF-β type I receptor and SMAD-dependent pathway.Results: Our results showed that BMP2 treatment significantly increased the production of hyaluronan by upregulating the expression of hyaluronan synthase 2 (HAS2). In addition, BMP2 upregulates the expression of connective tissue growth factor (CTGF), which subsequently mediates the BMP2-induced increases in HAS2 expression and hyaluronan production because overexpression of CTGF enhances, whereas knockdown of CTGF reverses, these effects. Notably, using kinase inhibitor- and siRNA-mediated knockdown approaches, we demonstrated that the inductive effect of BMP2 on the upregulation of CTGF is mediated by the ALK2/ALK3-mediated SMAD-dependent signaling pathway.Conclusions: Our findings provide new insight into the molecular mechanism by which BMP2 promotes the production of hyaluronan in human granulosa cells.


Sign in / Sign up

Export Citation Format

Share Document