scholarly journals Molecular Mechanism of Astragaloside IV in Improving Endothelial Dysfunction of Cardiovascular Diseases Mediated by Oxidative Stress

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Peipei Meng ◽  
Rui Yang ◽  
Fenjun Jiang ◽  
Jianbo Guo ◽  
Xinyu Lu ◽  
...  

Endothelial dysfunction, induced by oxidative stress, is an essential factor affecting cardiovascular disease. Uncoupling of endothelial nitric oxide synthase (eNOS) leads to a decrease in nitric oxide (NO) production, an increase in reactive oxygen species (ROS) production, NO consumption, and NO synthesis. As a main active ingredient of astragalus, astragaloside IV can reduce the apoptosis of endothelial cells during oxidative stress. This review is aimed at exploring the mechanism of astragaloside IV in improving oxidative stress-mediated endothelial dysfunction relevant to cardiovascular diseases. The findings showed that the astragaloside IV can prevent or reverse the uncoupling of eNOS, increase eNOS and NO, and enhance several activating enzymes to activate the antioxidant system. In-depth validation and quantitative experiments still need to be implemented.

2016 ◽  
Vol 310 (1) ◽  
pp. H39-H48 ◽  
Author(s):  
Masashi Mukohda ◽  
Madeliene Stump ◽  
Pimonrat Ketsawatsomkron ◽  
Chunyan Hu ◽  
Frederick W. Quelle ◽  
...  

Loss of peroxisome proliferator-activated receptor (PPAR)-γ function in the vascular endothelium enhances atherosclerosis and NF-κB target gene expression in high-fat diet-fed apolipoprotein E-deficient mice. The mechanisms by which endothelial PPAR-γ regulates inflammatory responses and protects against atherosclerosis remain unclear. To assess functional interactions between PPAR-γ and inflammation, we used a model of IL-1β-induced aortic dysfunction in transgenic mice with endothelium-specific overexpression of either wild-type (E-WT) or dominant negative PPAR-γ (E-V290M). IL-1β dose dependently decreased IκB-α, increased phospho-p65, and increased luciferase activity in the aorta of NF-κB-LUC transgenic mice. IL-1β also dose dependently reduced endothelial-dependent relaxation by ACh. The loss of ACh responsiveness was partially improved by pretreatment of the vessels with the PPAR-γ agonist rosiglitazone or in E-WT. Conversely, IL-1β-induced endothelial dysfunction was worsened in the aorta from E-V290M mice. Although IL-1β increased the expression of NF-κB target genes, NF-κB p65 inhibitor did not alleviate endothelial dysfunction induced by IL-1β. Tempol, a SOD mimetic, partially restored ACh responsiveness in the IL-1β-treated aorta. Notably, tempol only modestly improved protection in the E-WT aorta but had an increased protective effect in the E-V290M aorta compared with the aorta from nontransgenic mice, suggesting that PPAR-γ-mediated protection involves antioxidant effects. IL-1β increased ROS and decreased the phospho-endothelial nitric oxide synthase (Ser1177)-to-endothelial nitric oxide synthase ratio in the nontransgenic aorta. These effects were completely abolished in the aorta with endothelial overexpression of WT PPAR-γ but were worsened in the aorta with E-V290M even in the absence of IL-1β. We conclude that PPAR-γ protects against IL-1β-mediated endothelial dysfunction through a reduction of oxidative stress responses but not by blunting IL-1β-mediated NF-κB activity.


2019 ◽  
Vol 20 (1) ◽  
pp. 187 ◽  
Author(s):  
Andreas Daiber ◽  
Ning Xia ◽  
Sebastian Steven ◽  
Matthias Oelze ◽  
Alina Hanf ◽  
...  

The Global Burden of Disease Study identified cardiovascular risk factors as leading causes of global deaths and life years lost. Endothelial dysfunction represents a pathomechanism that is associated with most of these risk factors and stressors, and represents an early (subclinical) marker/predictor of atherosclerosis. Oxidative stress is a trigger of endothelial dysfunction and it is a hall-mark of cardiovascular diseases and of the risk factors/stressors that are responsible for their initiation. Endothelial function is largely based on endothelial nitric oxide synthase (eNOS) function and activity. Likewise, oxidative stress can lead to the loss of eNOS activity or even “uncoupling” of the enzyme by adverse regulation of well-defined “redox switches” in eNOS itself or up-/down-stream signaling molecules. Of note, not only eNOS function and activity in the endothelium are essential for vascular integrity and homeostasis, but also eNOS in perivascular adipose tissue plays an important role for these processes. Accordingly, eNOS protein represents an attractive therapeutic target that, so far, was not pharmacologically exploited. With our present work, we want to provide an overview on recent advances and future therapeutic strategies that could be used to target eNOS activity and function in cardiovascular (and other) diseases, including life style changes and epigenetic modulations. We highlight the redox-regulatory mechanisms in eNOS function and up- and down-stream signaling pathways (e.g., tetrahydrobiopterin metabolism and soluble guanylyl cyclase/cGMP pathway) and their potential pharmacological exploitation.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 377
Author(s):  
Yunna Lee ◽  
Eunok Im

Cardiovascular diseases (CVDs) are the most common cause of morbidity and mortality worldwide. The potential benefits of natural antioxidants derived from supplemental nutrients against CVDs are well known. Remarkably, natural antioxidants exert cardioprotective effects by reducing oxidative stress, increasing vasodilation, and normalizing endothelial dysfunction. Recently, considerable evidence has highlighted an important role played by the synergistic interaction between endothelial nitric oxide synthase (eNOS) and sirtuin 1 (SIRT1) in the maintenance of endothelial function. To provide a new perspective on the role of natural antioxidants against CVDs, we focused on microRNAs (miRNAs), which are important posttranscriptional modulators in human diseases. Several miRNAs are regulated via the consumption of natural antioxidants and are related to the regulation of oxidative stress by targeting eNOS and/or SIRT1. In this review, we have discussed the specific molecular regulation of eNOS/SIRT1-related endothelial dysfunction and its contribution to CVD pathologies; furthermore, we selected nine different miRNAs that target the expression of eNOS and SIRT1 in CVDs. Additionally, we have summarized the alteration of miRNA expression and regulation of activities of miRNA through natural antioxidant consumption.


2014 ◽  
Vol 289 (40) ◽  
pp. 27540-27550 ◽  
Author(s):  
Sabine Kossmann ◽  
Hanhan Hu ◽  
Sebastian Steven ◽  
Tanja Schönfelder ◽  
Daniela Fraccarollo ◽  
...  

2008 ◽  
Vol 294 (3) ◽  
pp. L582-L591 ◽  
Author(s):  
Neetu Sud ◽  
Stephen Wedgwood ◽  
Stephen M. Black

In this study, we explore the roles of the delta isoform of PKC (PKCδ) in the regulation of endothelial nitric oxide synthase (eNOS) activity in pulmonary arterial endothelial cells isolated from fetal lambs (FPAECs). Pharmacological inhibition of PKCδ with either rottlerin or with the peptide, δV1-1, acutely attenuated NO production, and this was associated with a decrease in phosphorylation of eNOS at Ser1177 (S1177). The chronic effects of PKCδ inhibition using either rottlerin or the overexpression of a dominant negative PKCδ mutant included the downregulation of eNOS gene expression that was manifested by a decrease in both eNOS promoter activity and protein expression after 24 h of treatment. We also found that PKCδ inhibition blunted Akt activation as observed by a reduction in phosphorylated Akt at position Ser473. Thus, we conclude that PKCδ is actively involved in the activation of Akt. To determine the effect of Akt on eNOS signaling, we overexpressed a dominant negative mutant of Akt and determined its effect of NO generation, eNOS expression, and phosphorylation of eNOS at S1177. Our results demonstrated that Akt inhibition was associated with decreased NO production that correlated with reduced phosphorylation of eNOS at S1177, and decreased eNOS promoter activity. We next evaluated the effect of endogenously produced NO on eNOS expression by incubating FPAECs with the eNOS inhibitor 2-ethyl-2-thiopseudourea (ETU). ETU significantly inhibited NO production, eNOS promoter activity, and eNOS protein levels. Together, our data indicate involvement of PKCδ-mediated Akt activation and NO generation in maintaining eNOS expression.


2019 ◽  
Vol 316 (1) ◽  
pp. H80-H88 ◽  
Author(s):  
Fumin Chang ◽  
Sheila Flavahan ◽  
Nicholas A. Flavahan

Homodimer formation is essential for the normal activity of endothelial nitric oxide synthase (eNOS). Structural uncoupling of eNOS, with generation of enzyme monomers, is thought to contribute to endothelial dysfunction in several vascular disorders, including aging. However, low-temperature SDS-PAGE of healthy arteries has revealed considerable variation between studies in the relative expression of eNOS dimers and monomers. While assessing structural uncoupling of eNOS in aging arteries, we identified methodological pitfalls that might contribute to such variation. Therefore, using human cultured aortic endothelial cells and aortas from young and aged Fischer-344 rats, we investigated optimal approaches for analyzing the expression of eNOS monomers and dimers. The results demonstrated that published differences in treatment of cell lysates can significantly impact the relative expression of several eNOS species, including denatured monomers, partially folded monomers, dimers, and higher-order oligomers. In aortas, experiments initially confirmed a large increase in eNOS monomers in aging arteries, consistent with structural uncoupling. However, these monomers were actually endogenous IgG, which, under these conditions, has mobility similar to eNOS monomers. Increased IgG levels in aged aortas likely reflect the aging-induced disruption of endothelial junctions and increased arterial penetration of IgG. After removal of the IgG signal, there were low levels of eNOS monomers in young arteries, which were not significantly different in aged arteries. Therefore, structural uncoupling of eNOS is not a prominent feature in young healthy arteries, and the process is not increased by aging. The study also identifies optimal approaches to analyze eNOS dimers and monomers. NEW & NOTEWORTHY Structural uncoupling of endothelial nitric oxide synthase (eNOS) is considered central to endothelial dysfunction. However, reported levels of eNOS dimers and monomers vary widely, even in healthy arteries. We demonstrate that sample processing can alter relative levels of eNOS species. Moreover, endothelial dysfunction in aging aortas results in IgG accumulation, which, because of similar mobility to eNOS monomers, could be misinterpreted as structural uncoupling. Indeed, enzyme monomerization is not prominent in young or aging arteries.


2004 ◽  
Vol 287 (2) ◽  
pp. F231-F235 ◽  
Author(s):  
Marcela Herrera ◽  
Jeffrey L. Garvin

Endothelin-1 (ET-1) acutely inhibits NaCl reabsorption by the thick ascending limb (THAL) by activating the ETB receptor, stimulating endothelial nitric oxide synthase (eNOS), and releasing nitric oxide (NO). In nonrenal tissue, chronic exposure to ET-1 stimulates eNOS expression via the ETB receptor and activation of phosphatidylinositol 3-kinase (PI3K). We hypothesized that ET-1 increases eNOS expression in the THAL by binding to ETB receptors and stimulating PI3K. In primary cultures of medullary THALs treated for 24 h, eNOS expression increased by 36 ± 18% with 0.01 nM ET-1, 123 ± 30% with 0.1 nM ( P < 0.05; n = 5), and 71 ± 30% with 1 nM, whereas 10 nM had no effect. BQ-788, a selective ETB receptor antagonist, completely blocked stimulation of eNOS expression caused by 0.1 nM ET-1 (12 ± 25 vs. 120 ± 40% for ET-1 alone; P < 0.05; n = 5). BQ-123, a selective ETA receptor antagonist, did not affect the increase in eNOS caused by 0.1 nM ET-1. Sarafotoxin c (S6c; 0.1 μM), a selective ETB receptor agonist, increased eNOS expression by 77 ± 30% ( P < 0.05; n = 6). Wortmannin (0.01 μM), a PI3K inhibitor, completely blocked the stimulatory effect of 0.1 μM S6c (77 ± 30 vs. −28 ± 9%; P < 0.05; n = 6). To test whether the increase in eNOS expression heightens activity, we measured NO release in response to simultaneous treatment with l-arginine, ionomycin, and clonidine using a NO-sensitive electrode. NO release by control cells was 337 ± 61 and 690 ± 126 pA in ET-1-treated cells ( P < 0.05; n = 5). Taken together, these data suggest that ET-1 stimulates THAL eNOS, activating ETB receptors and PI3K and thereby increasing NO production.


Sign in / Sign up

Export Citation Format

Share Document