scholarly journals Design and Image Research of Tennis Line Examination Based on Machine Vision Analysis

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Liu Yan ◽  
Sun Xin

In view of the intelligent demand of tennis line examination, this paper performs a systematic analysis on the intelligent recognition of tennis line examination. Then, a tennis line recognition method based on machine vision is proposed. In this paper, the color region of the image recognition region is divided based on the region growth, and the rough estimation of the court boundary is realized. In order to achieve the effect of camera calibration, a fast camera calibration method which can be used for a variety of court types is proposed. On the basis of camera calibration, a tennis line examination and segmentation system based on machine vision analysis is constructed, and the experimental results are verified by design experiments. The results show that the machine vision analysis-based intelligent segmentation system of tennis line examination has high recognition accuracy and can meet the actual needs of tennis line examination.

2021 ◽  
Vol 2093 (1) ◽  
pp. 012020
Author(s):  
Jiawei HUANG ◽  
Caixia BI ◽  
Jiayue LIU ◽  
Shaohua DONG

Abstract The existing technology of automatic classification and recognition of welding negative images by computer is difficult to achieve a multiple classification defect recognition while maintaining a high recognition accuracy, and the developed automatic recognition model of negative image defect cannot meet the actual needs of the field. Therefore, the convolutional neural network (CNN)-based intelligent recognition algorithm for negative image of weld defects is proposed, and a B/S (Browser/Server) architecture of weld defect feature image database combined with CNN is established subsequently, which converted from the existing CNN by the migration learning method. It makes full use of the negative big data and simplifies the algorithm development process, so that the recognition algorithm has a better generalization ability and the training algorithm accuracy of 97.18% achieved after training. The results of the comparison experiments with traditional recognition algorithms show that the CNN-based intelligent recognition algorithm for defective weld negatives has an accuracy of 92.31% for dichotomous defects, which is significantly better than the traditional recognition algorithm, the established recognition algorithm effectively improving the recognition accuracy and achieving multi-category defect recognition. At the same time, the CNN-based defect recognition method was established by combining the image segmentation algorithm and the defect intelligent recognition algorithm, which was applied to the actual negative images in the field with good results, further verifying the feasibility of CNN-based intelligent recognition algorithm in the field of defect recognition of welding negative images.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Dongsheng Wang ◽  
Jun Feng ◽  
Xinpeng Zhao ◽  
Yeping Bai ◽  
Yujie Wang ◽  
...  

It is difficult to form a method for recognizing the degree of infiltration of a tunnel lining. To solve this problem, we propose a recognition method by using a deep convolutional neural network. We carry out laboratory tests, prepare cement mortar specimens with different saturation levels, simulate different degrees of infiltration of tunnel concrete linings, and establish an infrared thermal image data set with different degrees of infiltration. Then, based on a deep learning method, the data set is trained using the Faster R-CNN+ResNet101 network, and a recognition model is established. The experiments show that the recognition model established by the deep learning method can be used to select cement mortar specimens with different degrees of infiltration by using an accurately minimized rectangular outer frame. This model shows that the classification recognition model for tunnel concrete lining infiltration established by the indoor experimental method has high recognition accuracy.


Author(s):  
Meng Chen ◽  
Yue Lei He ◽  
Pei Yi Gong ◽  
Zai Wei Li ◽  
Hong Yao Lu

2019 ◽  
Vol 39 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Lin Feng ◽  
Yang Liu ◽  
Zan Li ◽  
Meng Zhang ◽  
Feilong Wang ◽  
...  

PurposeThe purpose of this paper is to promote the efficiency of RGB-depth (RGB-D)-based object recognition in robot vision and find discriminative binary representations for RGB-D based objects.Design/methodology/approachTo promote the efficiency of RGB-D-based object recognition in robot vision, this paper applies hashing methods to RGB-D-based object recognition by utilizing the approximate nearest neighbors (ANN) to vote for the final result. To improve the object recognition accuracy in robot vision, an “Encoding+Selection” binary representation generation pattern is proposed. “Encoding+Selection” pattern can generate more discriminative binary representations for RGB-D-based objects. Moreover, label information is utilized to enhance the discrimination of each bit, which guarantees that the most discriminative bits can be selected.FindingsThe experiment results validate that the ANN-based voting recognition method is more efficient and effective compared to traditional recognition method in RGB-D-based object recognition for robot vision. Moreover, the effectiveness of the proposed bit selection method is also validated to be effective.Originality/valueHashing learning is applied to RGB-D-based object recognition, which significantly promotes the recognition efficiency for robot vision while maintaining high recognition accuracy. Besides, the “Encoding+Selection” pattern is utilized in the process of binary encoding, which effectively enhances the discrimination of binary representations for objects.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5221
Author(s):  
Da Zhang ◽  
Shuailin Chen

In order to achieve the noncontact detection of the contamination grade of insulators and to provide guidance for preventing the contamination flashover of insulators based on the pollution state, we propose a contamination grade recognition method based on the deep learning of ultraviolet discharge images using a sparse autoencoder (SAE) and a deep belief network (DBN). Under different humidity conditions, we filmed and preprocessed the ultraviolet discharge images of insulators at different contamination grades and we obtained the ultraviolet spot area sequence as original data for contamination grade recognition. A double-layer sparse autoencoder was used to extract sparse features that could characterize different contamination grades from the ultraviolet spot area sequence. Using the extracted features, a DBN composed of three layers of restricted Boltzmann machine was trained to provide contamination grade recognition. To verify the effectiveness of the method proposed in this paper, high-voltage experiments were performed on contaminated insulators at relative humidity levels of 80%, 85%, and 90%, and ultraviolet images were recorded. The proposed SAE–DBN method was used to identify the ultraviolet images of the insulators with different contamination grades. The recognition accuracy rates at the three humidity levels were 91.25%, 93.125%, and 92.5%. The experimental results showed that this method could accurately recognize the contamination grade of the insulator and provide guidance for the prevention of contamination flashover based on the pollution severity.


2021 ◽  
Vol 28 (1) ◽  
pp. 1-46
Author(s):  
Eugene M. Taranta II ◽  
Corey R. Pittman ◽  
Mehran Maghoumi ◽  
Mykola Maslych ◽  
Yasmine M. Moolenaar ◽  
...  

We present Machete, a straightforward segmenter one can use to isolate custom gestures in continuous input. Machete uses traditional continuous dynamic programming with a novel dissimilarity measure to align incoming data with gesture class templates in real time. Advantages of Machete over alternative techniques is that our segmenter is computationally efficient, accurate, device-agnostic, and works with a single training sample. We demonstrate Machete’s effectiveness through an extensive evaluation using four new high-activity datasets that combine puppeteering, direct manipulation, and gestures. We find that Machete outperforms three alternative techniques in segmentation accuracy and latency, making Machete the most performant segmenter. We further show that when combined with a custom gesture recognizer, Machete is the only option that achieves both high recognition accuracy and low latency in a video game application.


2021 ◽  
Vol 9 (16) ◽  
pp. 5396-5402
Author(s):  
Youngjun Park ◽  
Min-Kyu Kim ◽  
Jang-Sik Lee

This paper presents synaptic transistors that show long-term synaptic weight modulation via injection of ions. Linear and symmetric weight update is achieved, which enables high recognition accuracy in artificial neural networks.


Sign in / Sign up

Export Citation Format

Share Document