scholarly journals Deep Learning-Based Three-Dimensional Oral Conical Beam Computed Tomography for Diagnosis

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yangdong Lin ◽  
Miao He

In order to deeply study oral three-dimensional cone beam computed tomography (CBCT), the diagnosis of oral and facial surgical diseases based on deep learning was studied. The utility model related to a deep learning-based classification algorithm for oral neck and facial surgery diseases (deep diagnosis of oral and maxillofacial diseases, referred to as DDOM) is brought out; in this method, the DDOM algorithm proposed for patient classification, lesion segmentation, and tooth segmentation, respectively, can effectively process the three-dimensional oral CBCT data of patients and carry out patient-level classification. The segmentation results show that the proposed segmentation method can effectively segment the independent teeth in CBCT images, and the vertical magnification error of tooth CBCT images is clear. The average magnification rate was 7.4%. By correcting the equation of R value and CBCT image vertical magnification rate, the magnification error of tooth image length could be reduced from 7.4. According to the CBCT image length of teeth, the distance R from tooth center to FOV center, and the vertical magnification of CBCT image, the data closer to the real tooth size can be obtained, in which the magnification error is reduced to 1.0%. Therefore, it is proved that the 3D oral cone beam electronic computer based on deep learning can effectively assist doctors in three aspects: patient diagnosis, lesion localization, and surgical planning.

Author(s):  
Lucia H.S. Cevidanes ◽  
L’Tanya J. Bailey ◽  
Scott F. Tucker ◽  
Martin A. Styner ◽  
Andre Mol ◽  
...  

2016 ◽  
Vol 73 (4) ◽  
pp. 305
Author(s):  
Alessandra Areas e Souza ◽  
Ingrid De Assis Mota Costa ◽  
Paula Mozer Vidal

Objective: The aim of this study was to conduct a literature review on the use of cone-beam computed tomography in periodontics and determine the extent and severity of periodontal lesions so as to encourage the development of a new concept for diagnosis and surgical planning in periodontics. Material and methods: A literature search was conducted in PubMed database using the following keywords: computed tomography, diagnosis periodontics, bone defects, furcation lesions, and periodontal biotype. A total of 33 articles were found. Results: A review of the articles suggested benefits in using this technology in periodontal surgical planning, for treatment of furcation lesions, bone defects, and determination of periodontal biotype. Conclusion: Cone-beam computed tomography three-dimensional images is superior to conventional radiography. It also minimizes patient exposure to ionizing radiation, optimizes surgical planning, and decreases operative time, leading to a better response to treatment. This technology is very useful in clinical practice, but is not used widely in periodontics. We believe that the use of this technology should be promoted among professionals.


Sign in / Sign up

Export Citation Format

Share Document