scholarly journals Division Method and Seepage Law of Seepage Channels in a Tight Reservoir

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zhenkai Wu ◽  
Feifei Fang ◽  
Xizhe Li ◽  
Hanmin Xiao ◽  
Xuewei Liu ◽  
...  

Tight oil reservoirs are characterized by a low porosity, low permeability, and strong heterogeneity. The macropores, throats, and microcracks in reservoirs are the main seepage channels, which affect the seepage law in the reservoirs. In particular, oil-water two-phase flow in different types of pores requires further study. In this study, two groups of online NMR displacement experiments were designed to study the seepage characteristics of tight oil reservoirs. It was found that the main seepage channels for oil-water two-phase flow are the microcracks, large pores, and throats in the reservoir. The large pores are mainly micron and submicron scale in size. The oil in the small pores is only transferred to the large pores through imbibition to participate in the flow, and there is no two-phase flow. Based on the influence of different pore structures on the seepage law of a tight reservoir, the pores were divided into seepage zones, and a multistage seepage model for tight reservoirs was established. Based on this model, the effects of the imbibition, stress sensitivity, threshold pressure gradient, and Jamin effect on model’s yield were studied. The results show that imbibition is no longer effective after a while. Owing to the stress sensitivity, the threshold pressure gradient, and the Jamin effect, oil production will be reduced. As the parameter value increases, the oil production decreases. The production decreases rapidly in the early stage of mining while decreases slowly in the later stage, exhibiting a trend of high yield in the early stage and stable yield in the later stage.

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3704
Author(s):  
Mingwei Zhao ◽  
Mengjiao Cao ◽  
Haonan He ◽  
Caili Dai

A study on the seepage characteristics and laws of nano-micron pore throat in a low permeable reservoir matrix is of great significance for promoting high efficacy of low permeable reservoirs. Threshold pressure gradient (TPG) is an essential factor to reflect the seepage law. Here, variation laws of TPG and its influencing factors of low reservoir fluid are analyzed systematically through physical simulation experiment. Throat diameter distribution of cores was measured by a mercury injection method, and it was found that with the decrease of pore throat median diameter, TPG increase appeared slowly first and fast afterwards. The patterns of the TPG with permeability in water and oil were compared. Results showed that the TPG versus permeability gave power functions in a form and the TPG in oil was more than two times larger than that of water. Besides, TPG in two-phase flow was investigated by the stabilization method. Tests revealed that the higher the oil saturation, the greater the TPG value, and the TPG in two-phase flow is always higher than that of single-phase flow under the same conditions, which function as the combined action of the capillary force. In addition, the effects of core length, fluid type, and core wettability on the TPG were studied systematically, which has guiding significance for the development of a low permeability reservoir.


2018 ◽  
Vol 74 (1) ◽  
pp. 25-41 ◽  
Author(s):  
Yuansheng He ◽  
Yingyu Ren ◽  
Yunfeng Han ◽  
Ningde Jin

AbstractThe present study is a report on the asymmetry of dispersed oil phase in vertical upward oil-water two phase flow. The multi-channel signals of the rotating electric field conductance sensor with eight electrodes are collected in a 20-mm inner diameter pipe, and typical images of low pattern are captured using a high speed camera. With the multi-channel rotating electric field conductance signals collected at pipe cross section, multi-scale time asymmetry (MSA) and an algorithm of multi-scale first-order difference scatter plot are employed to uncover the fluid dynamics of oil-water two phase flow. The results indicate that MSA can characterise the non-linear behaviours of oil-water two phase flow. Besides, the MSA analysis also beneficial for understanding the underlying inhomogeneous distribution of the flow pattern in different directions at pipe cross section.


Measurement ◽  
2014 ◽  
Vol 49 ◽  
pp. 153-163 ◽  
Author(s):  
Zhao An ◽  
Jin Ningde ◽  
Zhai Lusheng ◽  
Gao Zhongke

2014 ◽  
Author(s):  
Pitao Wang ◽  
Huaxiang Wang ◽  
Benyuan Sun ◽  
Ziqiang Cui ◽  
Wenrui Huang

2010 ◽  
Author(s):  
W. H. Liu ◽  
L. J. Guo ◽  
Liejin Guo ◽  
D. D. Joseph ◽  
Y. Matsumoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document