scholarly journals On Computation Degree-Based Topological Descriptors for Planar Octahedron Networks

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wang Zhen ◽  
Parvez Ali ◽  
Haidar Ali ◽  
Ghulam Dustigeer ◽  
Jia-Bao Liu

A molecular graph is used to represent a chemical molecule in chemical graph theory, which is a branch of graph theory. A graph is considered to be linked if there is at least one link between its vertices. A topological index is a number that describes a graph’s topology. Cheminformatics is a relatively young discipline that brings together the field of sciences. Cheminformatics helps in establishing QSAR and QSPR models to find the characteristics of the chemical compound. We compute the first and second modified K-Banhatti indices, harmonic K-Banhatti index, symmetric division index, augmented Zagreb index, and inverse sum index and also provide the numerical results.

Author(s):  
Mohammad Reza Farahani ◽  
Wei Gao ◽  
Abdul Qudair Baig ◽  
Wasaq Khalid

Graph theory has much advancement in the field of mathematical chemistry. Recently, chemical graph theory has become very popular among researchers because of its wide applications in mathematical chemistry. The molecular topological descriptors are the numerical invariants of a molecular graph and are very useful for predicting their bioactivity. A great variety of such indices are studied and used in theoretical chemistry, pharmaceutical researchers, in drugs and in different other fields.In this article, we study the chemical graph of copper oxide and compute degree based topological indices mainly ABC, GA, ABC4, GA5, general Randić index and Zagreb index for copper(II) oxide, CuO. Furthermore, we give exact formulas of these indices which are helpful in studying the underlying topologies.


2019 ◽  
Vol 17 (1) ◽  
pp. 955-962 ◽  
Author(s):  
Zhiqiang Zhang ◽  
Zeshan Saleem Mufti ◽  
Muhammad Faisal Nadeem ◽  
Zaheer Ahmad ◽  
Muhammad Kamran Siddiqui ◽  
...  

AbstractAtoms displayed as vertices and bonds can be shown by edges on a molecular graph. For such graphs we can find the indices showing their bioactivity as well as their physio-chemical properties such as the molar refraction, molar volume, chromatographic behavior, heat of atomization, heat of vaporization, magnetic susceptibility, and the partition coefficient. Today, industry is flourishing because of the interdisciplinary study of different disciplines. This provides a way to understand the application of different disciplines. Chemical graph theory is a mixture of chemistry and mathematics, which plays an important role in chemical graph theory. Chemistry provides a chemical compound, and graph theory transforms this chemical compound into a molecular graphwhich further is studied by different aspects such as topological indices.We will investigate some indices of the line graph of the subdivided graph (para-line graph) of linear-[s] Anthracene and multiple Anthracene.


2021 ◽  
Vol 19 (1) ◽  
pp. 646-652
Author(s):  
Dongming Zhao ◽  
Manzoor Ahmad Zahid ◽  
Rida Irfan ◽  
Misbah Arshad ◽  
Asfand Fahad ◽  
...  

Abstract In recent years, several structure-based properties of the molecular graphs are understood through the chemical graph theory. The molecular graph G G of a molecule consists of vertices and edges, where vertices represent the atoms in a molecule and edges represent the chemical bonds between these atoms. A numerical quantity that gives information related to the topology of the molecular graphs is called a topological index. Several topological indices, contributing to chemical graph theory, have been defined and vastly studied. Recent inclusions in the class of the topological indices are the K-Banhatti indices. In this paper, we established the precise formulas for the first and second K-Banhatti, modified K-Banhatti, K-hyper Banhatti, and hyper Revan indices of silicon carbide Si 2 C 3 {{\rm{Si}}}_{2}{{\rm{C}}}_{3} - III [ n , m ] {\rm{III}}\left[n,m] . In addition, we present the graphical analysis along with the comparison of these indices for Si 2 C 3 {{\rm{Si}}}_{2}{{\rm{C}}}_{3} - III [ n , m ] {\rm{III}}\left[n,m] .


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Hai-Xia Li ◽  
Sarfaraz Ahmad ◽  
Iftikhar Ahmad

In the fields of chemical graph theory, topological index is a type of a molecular descriptor that is calculated based on the graph of a chemical compound. In this paper, M-polynomial OKn and OPn networks are computed. The M-polynomial is rich in information about degree-based topological indices. By applying the basic rules of calculus on M-polynomials, the first and second Zagreb indices, modified second Zagreb index, general Randić index, inverse Randić index, symmetric division index, harmonic index, inverse sum index, and augmented Zagreb index are recovered.


Mathematics ◽  
2018 ◽  
Vol 6 (7) ◽  
pp. 126 ◽  
Author(s):  
Muhammad Imran ◽  
Muhammad Siddiqui ◽  
Amna Abunamous ◽  
Dana Adi ◽  
Saida Rafique ◽  
...  

Graph theory has much great advances in the field of mathematical chemistry. Chemical graph theory has become very popular among researchers because of its wide applications in mathematical chemistry. The molecular topological descriptors are the numerical invariants of a molecular graph and are very useful for predicting their bioactivity. A great variety of such indices are studied and used in theoretical chemistry, pharmaceutical researchers, in drugs and in different other fields. In this article, we study the chemical graph of an oxide network and compute the total eccentricity, average eccentricity, eccentricity based Zagreb indices, atom-bond connectivity (ABC) index and geometric arithmetic index of an oxide network. Furthermore, we give analytically closed formulas of these indices which are helpful in studying the underlying topologies.


2021 ◽  
Vol 10 (9) ◽  
pp. 3093-3111
Author(s):  
P. Kandan ◽  
S. Subramanian ◽  
P. Rajesh

Chemical graph theory is a mixture of chemistry and mathematics both play an important role in chemical graph theory. Chemistry provides a chemical compound and graph theory transform this chemical compound into a molecular graph, which are associated with some numerical values these values are known as topological indices. In this study we consider the weighted modification of new bond-additive Mostar indices that appear to provide quantitative measures of peripheral shapes of molecules. We have computed the Additively Weighted Mostar Index and Multiplicatively Weighted Mostar Index for Conical and Generalized gear graph.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jia-Bao Liu ◽  
Ting Zhang ◽  
Sakander Hayat

It is one of the core problems in the study of chemical graph theory to study the topological index of molecular graph and the internal relationship between its structural properties and some invariants. In recent years, topological index has been gradually applied to the models of QSAR and QSPR . In this work, using the definition of the ABC index, AZI index, GA index, the multiplicative version of ordinary first Zagreb index, the second multiplicative Zagreb index, and Zagreb index, we calculate the degree-based topological indices of some networks. Then, the above indices’ formulas are obtained.


2020 ◽  
Vol 43 (1) ◽  
pp. 219-228
Author(s):  
Ghulam Dustigeer ◽  
Haidar Ali ◽  
Muhammad Imran Khan ◽  
Yu-Ming Chu

AbstractChemical graph theory is a branch of graph theory in which a chemical compound is presented with a simple graph called a molecular graph. There are atomic bonds in the chemistry of the chemical atomic graph and edges. The graph is connected when there is at least one connection between its vertices. The number that describes the topology of the graph is called the topological index. Cheminformatics is a new subject which is a combination of chemistry, mathematics and information science. It studies quantitative structure-activity (QSAR) and structure-property (QSPR) relationships that are used to predict the biological activities and properties of chemical compounds. We evaluated the second multiplicative Zagreb index, first and second universal Zagreb indices, first and second hyper Zagreb indices, sum and product connectivity indices for the planar octahedron network, triangular prism network, hex planar octahedron network, and give these indices closed analytical formulas.


Author(s):  
Mohammed Alsharafi ◽  
Yusuf Zeren ◽  
Abdu Alameri

In chemical graph theory, a topological descriptor is a numerical quantity that is based on the chemical structure of underlying chemical compound. Topological indices play an important role in chemical graph theory especially in the quantitative structure-property relationship (QSPR) and quantitative structure-activity relationship (QSAR). In this paper, we present explicit formulae for some basic mathematical operations for the second hyper-Zagreb index of complement graph containing the join G1 + G2, tensor product G1 \(\otimes\) G2, Cartesian product G1 x G2, composition G1 \(\circ\) G2, strong product G1 * G2, disjunction G1 V G2 and symmetric difference G1 \(\oplus\) G2. Moreover, we studied the second hyper-Zagreb index for some certain important physicochemical structures such as molecular complement graphs of V-Phenylenic Nanotube V PHX[q, p], V-Phenylenic Nanotorus V PHY [m, n] and Titania Nanotubes TiO2.


Author(s):  
Eleanor Joyce Gardiner

The focus of this chapter will be the uses of graph theory in chemoinformatics and in structural bioinformatics. There is a long history of chemical graph theory dating back to the 1860’s and Kekule’s structural theory. It is natural to regard the atoms of a molecule as nodes and the bonds as edges (2D representations) of a labeled graph (a molecular graph). This chapter will concentrate on the algorithms developed to exploit the computer representation of such graphs and their extensions in both two and three dimensions (where an edge represents the distance in 3D space between a pair of atoms), together with the algorithms developed to exploit them. The algorithms will generally be summarized rather than detailed. The methods were later extended to larger macromolecules (such as proteins); these will be covered in less detail.


Sign in / Sign up

Export Citation Format

Share Document