scholarly journals Study on Temporal and Spatial Characteristics of Overlying Strata in the Deep Coal Mining Process

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bang’an Zhang ◽  
Yushun Yang ◽  
Dongming Zhang

This study adopts the stress relief method to test the in situ stress in the field to obtain the in situ stress distribution characteristics of no. 2 + 3# coal seam. A three-dimensional model was established with the no. S3012 working face as the engineering background, and the measured in situ stress values were applied to the three-dimensional model, and the spatial-temporal evolution characteristics of coal and rock mass around the stope during coal seam mining were studied. The specific conclusions are as follows: the three-dimensional stress distribution map in front of, behind, and on both sides of the working face in the process of coal mining are obtained. As the working face goes on, the maximum value of the supporting stress formed in front of, behind, and on both sides of the working face shifts to the corner, presenting a “hump-like” distribution. The stress concentration coefficient of front, back, and both sides of stope increases linearly with the increase of the mining size. Under the same mining size, the stress concentration coefficient in front of stope is the smallest, and the stress concentration coefficient on both sides is the largest. The three-dimensional displacement field distribution nephogram of overlying strata in the process of coal mining is obtained. With the continuous advance of the working face, the roof strata of coal seam undergo the continuous dynamic subsidence process, and the roof subsidence increases continuously, showing the shape of “bowl” with sharp bottom. In the process of working face mining, the roof displacement of coal seam showed an “O” shape evolution characteristic. The three-dimensional distribution cloud map of the plastic zone of coal and rock mass in the process of the working face mining was obtained, and the failure volume of the plastic zone gradually increases with the continuous progress of the working face.

2021 ◽  
Author(s):  
Bang-an Zhang ◽  
Yang yushun ◽  
Dong-ming Zhang

Abstract This paper adopts the stress relief method to test the in-situ stress in the field to obtain the in-situ stress distribution characteristics of No. 2+3# coal seam. A three-dimensional model was established with the No. S3012 working face as the engineering background, and the measured in-situ stress values ​​were applied to the three-dimensional model, and the spatial-temporal evolution characteristics of coal and rock mass around the stope during coal seam mining were studied. The specific conclusions are as follows: the three-dimensional stress distribution map in front of, behind and on both sides of the working face in the process of coal mining are obtained. As the working face goes on, the maximum value of the supporting stress formed in front of, behind and on both sides of the working face shifts to the corner, presenting a “hump-like” distribution. The stress concentration coefficient of front, back and both sides of stope increases linearly with the increase of mining size. Under the same mining size, the stress concentration coefficient in front of stope is the smallest, and the stress concentration coefficient on both sides is the largest. The three-dimensional displacement field distribution nephogram of overlying strata in the process of coal mining is obtained. With the continuous advance of the working face, the roof strata of coal seam undergo continuous dynamic subsidence process, and the roof subsidence increases continuously, showing the shape of "bowl" with sharp bottom. In the process of working face mining, the roof displacement of coal seam showed an "O" shape evolution characteristic. The three-dimensional distribution cloud map of the plastic zone of coal and rock mass in the process of working face mining was obtained, and the failure volume of the plastic zone gradually increases with the continuous progress of the working face.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Rui Zhou ◽  
Yujin Qin ◽  
Zhizhen Zhang

This study aimed to explore the stress distribution and variation of reverse fault-affected mined coal body. A mechanical analysis model of the coal body in the reverse fault area was first established, then the coal body stress characterization equation was derived, and the stress distribution pattern on the coal body was calculated. Subsequently, applying the Mohr–Coulomb strength criterion revealed the following relationship: the closer is the distance to the reverse fault, the worse is the stability of the coal body, and that the coal body strength influences the stress concentration of the coal body in front of the working face. Moreover, simulation with FLAC3D was carried out to verify the coal body stress calculated by the mechanical model as well as the fluctuation of the coal body stress concentration. It could be concluded that while mining the hanging wall of the reverse fault, the stress concentration of mined coal body decreases with the increase of reverse fault dip angle, but increases with the increase of reverse fault throw; the stress concentration magnitude generated during footwall mining is lesser than that during hanging-wall mining. In other words, the magnitude of coal body stress concentration can be affected by the hanging wall and footwall mining, as well as parameters of the reverse fault. Finally, intrinsically safe GZY25 borehole stress sensors were used to monitor the coal body stresses in the reverse fault area under the influence of mining in Xinchun Coal Mine and ZuoQiuka Coal Mine. It was found that the coal body stress concentration in front of the working face either increased gradually or increased first before decreasing. It can be concluded that with the decrease of the distance between the working face and reverse fault, the vertical stress of the coal body increases, and the vertical stress of the coal body begins to increase obviously at a certain position. At this point, the vertical stress of the coal body can be generalized to 1.02–1.39 times of the initial vertical stress. Furthermore, the stress concentration coefficient of coal body is related to the distance from the reverse fault, and two changes occur: ① if the coal-bearing capacity does not exceed its strength, the coal stress in front of the working face increases gradually, and the stress concentration factor increases gradually; ② the stress concentration coefficient of mining coal body increases first, such that when the coal body bearing capacity exceeds its strength, the coal body fails and loses all its effective bearing capacity, followed by the decrease in coal body stress concentration coefficient.


Author(s):  
Xiaojie Fang ◽  
Caifang Wu ◽  
Xiuming Jiang ◽  
Ningning Liu ◽  
Dan Zhou ◽  
...  

2014 ◽  
Vol 543-547 ◽  
pp. 3967-3973
Author(s):  
Bao Shan Han

There are abundant CBM (Coalbed Methane) in China. These CBM has caused a remarkable problem to the coal-mining in China. In order to improve the structure of Chinese energy and eliminate the risk of coal mine gas, the relevant industries and sections have implemented many explorations in CBM enriched areas. With great achievements, there are many important problems in the actions of CBM exploitation. The disadvantageous interaction of the surface CBM well and the later coal mining has been ignored at all. There are many disadvantages and defects. To solve these problems and eliminate or weaken the disadvantageous, the scientific and reasonable design of surface CBM well location is an important step. With the thinking of surface condition, coal mining plan, the arrangement of coal mine laneway, the direction and scale of the in-situ stress, and thinking more about the negative influence to and of surface CBM well, according to the theories of mining dynamics, mining engineering, mining geomechanics, and the CBM engineering, the design theory of the surface CBM well net can be studied. Finally, the arrangement principle of CBM product well in coal field is presented. The existing or future coal pillar will be a critical location for the surface CBM well location.


2014 ◽  
Vol 1049-1050 ◽  
pp. 335-338 ◽  
Author(s):  
Fa Quan Liu ◽  
Xue Wen Geng ◽  
Yong Che ◽  
Xiang Cui

To get the maximum coal in front of the working face of the 17# coal seam, we installed a longer beam which is 1.2m in length in the leading end of the original working face supports ZF3000/17/28, and know that working face supports’ setting load and working resistance are lower .We changed the original supports with shield supports ZY3800/15/33 that are adaptable in the geological condition and got the favorable affection.


2013 ◽  
Vol 456 ◽  
pp. 451-455
Author(s):  
Jun Yang ◽  
Bo Li ◽  
Qiang Jia ◽  
Yuan Xing Li ◽  
Ming Yue Zhang ◽  
...  

Fatigue test of the welded joint of 5083 aluminum alloy with smooth and height of specimen and the weld zone than the high test measurement and theoretical stress concentration coefficient calculation, the weld reinforcement effect of stress concentration on the fatigue performance of welded joints. The results show that: Smooth tensile strength of specimens for 264MPa, fatigue strength is 95MPa, the tensile strength of the 36%. Higher tensile strength of specimens for 320MPa, fatigue strength is 70MPa, the tensile strength of the 22%. Higher specimen stress concentration coefficient is 1.64, the stress concentration to the weld toe becomes fatigue initiation source, and reduces the fatigue strength and the fatigue life of welded joints.


2018 ◽  
Vol 10 (6) ◽  
pp. 168781401878146 ◽  
Author(s):  
Zhiping Zeng ◽  
Shanyi Song ◽  
Weidong Wang ◽  
Haijian Yan ◽  
Guoshu Wang ◽  
...  

In this study, in situ experiments were conducted to study the changing characteristics of the lateral and longitudinal resistance of a ballast bed, and a three-dimensional model for the ballast bed and sleeper was constructed based on the discrete-element method. The effects of the lateral and longitudinal resistance of the ballast bed, such as gravel ballast grading, sleeper depth, the angle of the shoulder slope, and ballast bed shoulder width, among others, were studied. The results suggest that (1) the lateral and longitudinal resistance of the ballast bed increases with the widening of ballast grading, and within the size distribution limits, the resistance of the ballast bed satisfies the specification; (2) the lateral and longitudinal resistance of ballast bed increases with an increase in the sleeper depth and the resistance of ballast bed satisfies the specifications for sleeper depth greater than 150 mm; (3) the lateral resistance of the ballast bed increases with a decrease in the angle of the shoulder slope, whereas the longitudinal resistance remains unchanged and the resistance of the ballast bed satisfies the specifications for slope gradient of 1:1.75 or less; and finally, (4) the lateral resistance of the ballast bed increases with the widening of the ballast bed shoulder, whereas the longitudinal resistance remains unchanged, and the resistance of ballast bed satisfies the specifications when the shoulder width is greater than 400 mm.


Sign in / Sign up

Export Citation Format

Share Document